
LECTURE 1

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

1

Corse Title: DATA STRUCTURE

Partho Sarathi Sarker

Asst. Professor: Dept. Of CSE

1

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

2

Data Structure (UGV) Format

Course Code: CSE-0613-1205 Credits: 03

Exam Hours: 03 CIE Marks: 90

Course for 2nd Semester,
Bachelor of Science in Computer Science Engineering (CSE)

SEE Marks: 60

Course Learning Outcome (CLOs): After Completing this course successfully, the
student will be able to…

CLO1 Describe the fundamental concepts of data structures and their applications in various domains.

CLO2 Understand the basic and advanced data structures, and be able to analyse their time and space

complexity.

CLO3 Create and implement basic and advanced data structures using programming languages like

C++, Java, or Python.

CLO4 Apply appropriate data structures to solve real-world problems, such as file structures, symbol

tables, and network data structures.

CLO5 Identify and select appropriate data structures and algorithms to solve a given problem based on

its requirements and constraints.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

3

Sl. No. COURSE CONTENT HRs CLOs

1 Introduction to Data Structures: Overview of data structures, Types of data

structures: linear and nonlinear, Arrays and linked lists, Stacks and queues, Trees and

graphs

3 CLO1

CLO2

2 Overview and Types of data structures: Arrays and linked lists, Stacks and queues,

Implementation of basic data structures, Operations on basic data structures, Time

and space complexity analysis

4 CLO3

3 Arrays and linked lists: Sorting algorithms: bubble sort, insertion searching

algorithms: linear search, binary search. Struct Variable, Link list Creation, Insertion,

Deletion, searching, traversing

9 CLO4

4 Stacks and queues: push,pop , enque, dequue function definition, overflow,

underflow condition, design stack and queue with array and analyse various condition

7 CLO4

CLO5

5 Nonlinear Data Structures: Trees, Type of Trees, Tree Representation, Graphs, Type of

Graphs, Graph representation, BFS, DFS, Pre-order, in-order, post-order search.

7 CLO5

Recommended Books:

1. "Data Structures and Algorithm Analysis in C++" by Mark A. Weiss

2. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

3. "Data Structures Using C" by Reema Thareja

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

4

ASSESSMENT PATTERN

Bloom's Category
Marks (out of 90)

Tests
(45)

Assignments
(15)

Quizzes
(15)

Attendance
(15)

Remember 5 03

Understand 5 04 05

Apply 15 05 05

Analyze 10

Evaluate 5 03 05

Create 5

Bloom's Category Test

Remember 7

Understand 7

Apply 20

Analyze 15

Evaluate 6

Create 5

CIE- Continuous Internal Evaluation (90 Marks)

SEE- Semester End Examination (60 Marks)

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

5

week

no

Topics Teaching Learning Strategy(s) Assessment

Strategy(s)

Alignment

to CLO

1 Introduction to Data Structures:

Describe concepts, importance, and types

of data structures

Lecture, multimedia, group

discussion

Feedback, Q&A,

assessment of

LOs

CLO1

2 Operation on Data Structure, Time-Space

Complexity, Algorithm, Array definition

Lecture, multimedia, practical

examples

Feedback, Q&A,

quizzes

CLO2

3 Arrays:Initialization, access, Types of Array,

Array Addressing: Row major, Column Major

Lecture, multimedia, practical

examples

Feedback, Q&A,

quizzes

CLO2

4 Sorting and Searching Algorithms: Linear

Search, Binary Search

Lecture, multimedia, practical

examples

Feedback, Q&A,

quizzes

CLO2

5 Sorting and Searching Algorithms: Selection

Sort, Bubble Sort

Lecture, multimedia, hands-

on practice

Midterm Quiz #1,

assessment of

LOs

CLO1

6 Sorting and Searching Algorithms: Insertion

Sort, Quick Sort

Lecture, multimedia, hands-

on practice

CLO2

7 Stacks and Queues, Array Implementation of

Stack Push, Pop Operation of a Stack.

Lecture, multimedia, hands-

on practice

Feedback, Q&A,

lab assignments

CLO2, CLO3

8 Stacks and Queues

Enqueue and Dequeue operation

Lecture, multimedia, hands-

on practice

Feedback, Q&A,

lab assignments

CLO2, CLO3

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

6

9 Link List Definition, Difference between

array and Link List, Link list creation

Lecture, multimedia,

hands-on practice

Feedback, Q&A,

lab assignments

CLO2, CLO3

10 Linked Lists Operation:

Create, traverse, search, insert, and delete

operations in linked lists

Lecture, multimedia,

hands-on practice

Feedback, Q&A, lab

assignments

CLO2, CLO3

11 Linked Lists Operation:

Create, traverse, search, insert, and delete

operations in linked lists

Lecture, multimedia,

hands-on practice

Feedback, Q&A, lab

assignments

CLO2, CLO3

12 Trees: type, properties

Understand and implement tree structures

and their traversal

Lecture, multimedia,

hands-on practice

Feedback, Q&A, lab

assignments

CLO2, CLO3

13 Pre-order, in-order, post-order Representation

Implement tree traversal techniques

Lecture, multimedia,

hands-on practice

Midterm Quiz #2,

lab assignments

CLO2-CLO5

14 Graphs: Representation and type Lecture, multimedia,

hands-on practice

Feedback, Q&A, lab

assignments

CLO2-CLO5

15 Breadth First Search Algorithm(BFS), Application Lecture, multimedia,

hands-on practice

Final Exam, lab

assignments

CLO2-CLO5

16 Depth First Search Algorithm(DFS), Application Lecture, multimedia,

hands-on practice

Final Exam, lab

assignments

CLO2-CLO5

17 Review Class

LECTURE 1

WEEK 1

Introduction to Data Structures:

Overview of data structures,

Types of data structures: linear

and nonlinear, Arrays and linked

lists, Stacks and queues, Trees
and graphs

7

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

DATA STRUCTUE

Let us start with questions:

 1. What is Data?

 2. What is Structure?

8

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

DATA STRUCTUE

Data means raw facts or information that

can be processed to get results or

products.

 Some elementary items constitute a unit

and that unit may be considered as a

structure.
❖A structure may be treated as a frame or pro-forma

where we organize some elementary items in different

ways.

9

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

DATA STRUCTURE

❑Data structure is a structure where we

organize elementary data items in

different ways and there exits structural

relationship among the items.

❖That means, a data structure is a means of

structural relationships of elementary data

items for storing and retrieving data in

computer’s memory.

10

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

11

Data Structure [Cont..]

Usually elementary data items are the

elements of a data structure.

However, a data structure may be an

element of another data structure. That

means a data structure may contain

another data structure.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

DATA STRUCTURE [CONTD.]

❑Example of Data Structures:
❖Array, Linked List, Stack, Queue, Tree, Graph, Hash

Table etc.

❑Types of elementary data item:
❖Character, Integer, Floating point numbers etc.

❑

❑Expressions of elementary data in C/C++

❑Elementary data item - Expression in C/C++
❖Character - char

❖ Integer - int

❖Floating point number - float

❑

12

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

TYPE OF DATA STRUCTURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

13

LECTURE 1

A SIMPLE QUESTION ?

What are the major (basic) operations

that can be performed on data

structure?

14

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

WEEK 2
OPERATION ON DATA STRUCTURE, TIME-
SPACE COMPLEXITY, ALGORITHM, ARRAY

DEFINITION

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

15

LECTURE 1

OPERATIONS ON DATA STRUCTURE

Basic:

❑insertion (addition)

❑deletion (access)

❑searching (locate)

Additional (special):

❑sorting

❑merging etc

16

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

ALGORITHM

❑Set of instructions that can be followed to

perform a task. In other words sequence

of steps that can be followed to solve a

problem.

❑To write an algorithm we do not strictly

follow grammar of any particular

programming language.

❑However its language may be near to a

programming language.

17

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

ALGORITHM

❑Each and every algorithm can be divided into

three sections.

❖First section is input section, where we show which

data elements are to be given.

❖The second section is very important one, which is

operational or processing section. Here we have

to do all necessary operations, such as computation,

taking decision, calling other procedure (algorithm) etc.

❖The third section is output, where we display the

result found from the second section.

18

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

PROGRAM

❑ Sequence of instructions of any programming

language that can be followed to perform a

particular task.

❑Like an algorithm generally a program has three

sections such as input, processing and output.

19

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

PROGRAM

❑ In a program usually we use a large amount of

data. Most of the cases these data are not

elementary items, where exists structural

relationship between elementary data items.

❖That means the programs uses data structure(s).

❑For a particular problem (usually for complex

problem), at first we may write an algorithm

then the algorithm may be converted into a

program.

20

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

COMPLEXITY OF ALGORITHM

❑Two types of complexities:

❖Time complexity

❖Space complexity.

21

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

TIME COMPLEXITY

❑This complexity is related to execution

time of the algorithm.

❑It depends on the number of element

(item) comparisons and number of

element movement (movement of data

from one place to another).

22

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

SPACE COMPLEXITY

❑This complexity is related to space

(memory) needs in the main memory

for the data set used to implement

the algorithm.

❑That means if there n data items

used in an algorithm, the space

complexity of the algorithm will be

proportional to n.

23

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

❑The complexity of an algorithm (either

time complexity or space complexity) is

represented using asymptotic notations.

❑One of the asymptotic notations is O (big-

oh) notation.

❑Big-oh (O) notation is also called upper

bound of the complexity.

24

Symbolic Notation for Time Complexity

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1 25

Symbolic Notation

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

1.Define data and data structure with example.

2. What are the elementary data items ? Give

example.

3. What is data structure? What are the major

operations that can be performed on data

structure?

 4. What is the difference between an algorithm and

a program?

26

Sample Questions of this chapter

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

5. What do you mean by time and space

complexities?

6. A data structure may be an element of

another data structure. Explain this

statement with example.

7. There are three sections in an algorithm,

name these sections. Which one is most

important ? Explain.

27

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

LECTURE 1

WEEK 3

ARRAYS:INITIALIZATION, ACCESS, TYPES

OF ARRAY, ARRAY ADDRESSING: ROW
MAJOR, COLUMN MAJOR

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

28

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

29

DEFINITION OF AN ARRAY

❑An array is a finite set of same type of data items.

 In other words, it is a collection of homogeneous data
items (elements).

❑The elements of an array are stored in successive
memory locations.

❑Any element of an array is referred by array name
and index number (subscript).

❑There may have many dimensional arrays. But usually
two types of array are widely used; such as

❖one dimensional (linear) array and

❖two dimensional array.

Md. Jubayar Alam Rafi Lecturer: Dept. Of CSE 29

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

30

TYPES OF ARRAY

One Dimensional

Array

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

31

ONE DIMENSIONAL ARRAY

❑An array that can be represented by only one

dimension such as row or column and that holds

finite number of same type of data items is

called one dimensional (linear) array.

Figure 2.1: Graphical representation of one dimensional array.

0 10 12 13 19 20 18 23 29

10 1 2 3 4 5 6 7 8

39

9

Array B

Here 1, 2, 3, … … …, 10 are index number, and 0, 10, 12, … … …, 39

 are data items or elements of the array and B is the array name.

ONE DIMENSIONAL ARRAY [CONTD.]

❑Symbolically an element of the array is

expressed as Bi or B[i], which denotes ith

element of the array, B.

❑Thus B[4], B[9] denotes respectively the 4th

element and the 9th element of the array, B.

❑The name of the array usually is a name

constituted by one or more characters.

❑Thus array name may be A, S, Stock, Array1

etc.

❑The element of an array may be number

(integer or floating point number) or

character.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

32

ONE DIMENSIONAL ARRAY [CONTD.]

❑Expression of one dimensional array in

C/C++:

❖ For integer array:

int a[10];

❖ For character array:

char b[30];

❖ For floating point array:

float B[10];

Figure 2.2: Declaration of Array in C/C
++

.

Data Type Array Name Array Size

float B[10];

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

33

ONE DIMENSIONAL ARRAY [CONTD.]

Store an element into an array
❖B[4] = 19;

 it means 19 will be stored in the cell number 4 or 5 of the
array of B.

 If there is any (previous) value that will be overwritten.

 Read (retrieve) a value (element) from an array
❖x = B[6];

it means the value of x will be 20, if the cell

number 6 or 7 of the array, B contains 20.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

34

STORING DATA TO THE ARRAY

❑Code in C/C++ for storing data in an array
❖int x[10];

❖for (i = 0; i < 10; ++i)

❖ scanf (“%d”, &x[i]);

Since the size of the array is 10, so we should
enter data to the array 10 times.

That is why we use a loop of 10 times using a
variable i.

C/C++ language starts indexing from 0 (zero), so
the loop also starts from 0 (zero).

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

35

ONE DIMENSIONAL ARRAY [CONTD.]

❑Code in C/C++ for accessing data from an array

and the data will be displayed on the monitor’s

screen:

int x[10];

for (i =0; i < 10; ++i)

printf (“%d”, x[i]);

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

36

POINTER AND DYNAMIC ARRAY

We can declare a pointer as follows:

int *a;

Here a is pointer variable that point integer

type data.

Similarly we can declare pointer for other types

of data.

Using pointer and keyword, now we can declare

dynamic array.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

37

DYNAMIC ARRAY

Dynamic array declaration:

int *a;

a= new int [5];

a

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

38

DYNAMIC ARRAY

Variable can be used for size of the array.

Such as:

int s, *a;

cin>>s;

a= new int [s];

Size can be increased also:

s= s+1;

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

39

DYNAMIC ARRAY

Entering data to an array:

int s, i,*a;

cin>>s;

a= new int [s];

for(i =0;i<s;++i)

cin>>a[i];

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

40

TO FIND OUT LARGEST ELEMENT

❑Problem 2.1:
❖Given a list of elements, write an algorithm to store the list of elements

(numbers) in an array and find out the largest element of the list.

❑Algorithm 2.1: Algorithm to search the largest element of a
list
1. Input: x[1 . . . n];

2. for (i = 1; i ≤ n; ++i)

 store data to x[i];

3. large = x[1];

4. for (i = 2; i ≤ n; ++i)

 if (x[i] > large), large = x[i];

5. Output: the largest number is, large

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

41

TO FIND OUT LARGEST ELEMENT

Code for algorithm 2.1 in C/C++
int x[10],i, large;

cout<< “Enter data to the array:”;

 for (i = 0; i < 10; ++i)

 {

 cin>>x[i];

 }

 large = x[0];

 for (i = 1; i < 10; ++i)

 if (x[i] > large), large = x[i];

cout<<“the largest is:”<< large;

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

42

FIND OUT THE SUMMATIONS OF

EVEN AND ODD NUMBERS

❑Algorithm 2.3: Algorithm to find the
summation of even and odd numbers

1. Input: A[1...n], sum_odd = 0, sum_even = 0;

 //An array and variables to store the summation

 2. for (i = 1; i ≤ n; ++i)

 {

 if (A[i] % 2 = = 0),

 sum_even = sum_even + A[i];

 else

 sum_odd = sum_odd + A[i];

 }

3. Output: Summation of odd numbers, sum_odd

 and summation of even numbers, sum_even)

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

43

SUMMATION OF NUMBERS IN ODD AND

EVEN INDICES SEPARATELY

❑Algorithm 2.4: Algorithm to find the

summation of even and odd indexed numbers

1. Input: A[1...n], sum_odd = 0, sum_even = 0;

 //An array and variables (to store the summation)

2. for (i = 1; i ≤ n; ++i)

 {

 if (i % 2 = = 0), sum_even = sum_even + A[i];

 else sum_odd = sum_odd + A[i];

 }

3. Output: Summation of numbers in odd indices, sum_odd

and summation of numbers in even indices, sum_even.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

44

TYPES OF ARRAY

Two Dimensional Array

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

45

DEFINITION OF TWO DIMENSIONAL ARRAY

❖ Two dimensional array is an array that has two dimensions, such as
row and column.

❖ Total number of elements in a two dimensional array can be
calculated by multiplication of the number of rows and the number
of columns.

❖ If there are m rows and n columns, then the total number of
elements is m × n, and m × n is called the size of the array.

❖ Of course, the data elements of the array will be same type.

❖ In mathematics, the two dimensional array is called a matrix and in
business it is called table.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

46

SYMBOLIC REPRESENTATION OF

TWO DIMENSIONAL ARRAY

A two dimensional array can be represented

using symbols as follows:

Where m is the number of rows and

 n is the number of columns.

 A[1 m, 1 n]

 m rows n columns

njandmiforjiAorA ji 11],[

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

47

TWO DIMENSIONAL ARRAY

❑ .

Figure 2.4: Graphical representation of two dimensional array

Cell
B[4][6]

Array B

0 10 12 13 19 20 18 23

56
 0 10 12 13 19 20 18 23 29 39

51 62 73 79 70 80 63

..

.. 75

..

20 31 32 33 39 40 48 33

1 2 3 4 5 6 7 8

1

2

3

4

5

6

Size = 6 × 8

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

48

EXPRESSION OF TWO DIMENSIONAL

ARRAY

Two dimensional array can be expressed in C/C++

as follows:

 int A[5][4];

 Here int is the type of the array,

 A is the name of the array,

 5 is the number of rows and

 4 is the number of columns.

The type of the array is integer means the data of the array are
integers.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

49

EXPRESSION [CONT…]

Another Example of expression:

 Float B[40][4];

Data Type

Name of

the Array

Number

of rows

Number of

columns

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

50

TO STORE AND RETRIEVE VALUES IN AND FROM

ARRAY

❑Data can be stored in a two dimensional array using
loop or directly as shown below:

❑i) storing data taken from keyboard

 int B[7][3];

 for (int i = 0; i < 7; ++ i)

 {

 for (int j = 0; j < 3; ++ j)

 scanf (“%d”, &B[i][j]);

 }

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

51

II) DIRECT INSERTION OF DATA IN TWO

DIMENSIONAL ARRAY

❑int B[7][3] = {

 { 1, 2, 3},

 { 9, 10, 11},

 … …. ….,

 … …. ….,

 … …. ….,

 … …. ….,

 {22, 25, 40}

 };

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

52

TWO DIMENSIONAL ARRAY REPRESENTATION IN

MEMORY

❑The elements of a two dimensional array are

stored in computer’s memory row by row or

column by column.

❑ If the array is stored as row by row, it is

called row-major order.

❑ If the array is stored as column by column, it

is called column-major order.

❑Suppose there is a two-dimensional array of

size 5 × 6. That means, there are 5 rows and

6 columns in the array.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

53

ARRAY REPRESENTATION IN MEMORY

❑ In row-major order, elements of a two

dimensional array are ordered as –

❑A11, A12, A13, A14, A15, A16, A21, A22, A23, A24,

A25, A26, A31,, A46, A51, A52,

.......,A56.

❑and in column-major order, elements are

ordered as –

❑A11, A21, A31, A41, A51, A12, A22, A32, A42, A52,

A13,, A55, A16, A26,,A56.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

54

LOCATION OF AN ELEMENT(ARRAY

ADDRESSING)

❑ Location of an element of a two-dimensional

array

❖ Row-major Order:

If Loc (A[i, j]) denotes the location in the memory of the

element A[i][j] or Aij, then in row-major order –

 Loc (A[i, j]) = Base (A) + (n (i - 1) + (j - 1)) * w;

Here Base (A) is starting or base address of the array A, n is

the number of columns and w is the width of each cell, i.e,

number bytes per cell.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

55

LOCATION OF AN ELEMENT

❑Column-major Order:

❖ In column-major order,

Loc (A[i, j]) = Base (A) + (m (j - 1) + (i - 1)) * w;

❖ Here Base (A) is starting or base address of the

array A, m is the number of rows and w is the

cell width.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

56

LOCATION OF AN ELEMENT

❑Example:
❖Base address, Base (A) = 100, Size of the array = 5 × 6. If the type

of array is integer then find Loc (A[4, 3]).

❑Solution:
(2 bytes for each integer cell in C/C++)
If the array is stored in row-major order:

Loc (A[4, 3]) = Base (A) + (n (i - 1) + (j - 1))* 2
= 100 + (6 × 3 + 2)* 2
= 100 + 40
= 140

If the array is stored in memory in column-major order:
Loc (A[4, 3]) = Base (A) + m (j - 1) + (i - 1)* 2
= 100 + (5 × 2 + 3)* 2
= 100 + 26
=126

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

57

TWO DIMENSIONAL ARRAY

Operations on two dimensional

array

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

58

THE SUMMATION OF THE DIAGONAL ELEMENTS

Figure 2.9: Diagonal elements of a two-dimensional array.

i = j

Array B[n][n]

i + j = n +1

2

3

4

5

2 3 4 51

19 19

.. 10 .. 62 ..

.. .. 12

.. 51 .. 13 ..

93 68

1

j

i

Rows = 5

Columns = 5

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

59

 ALGORITHM TO FIND OUT SUMMATION OF DIAGONAL ELEMENTS

❑1. Input: B[1 . . . n, 1...n], sum = 0;

 //a two dimensional array

❑2. Find each diagonal element and add them

 for (i = 1; i ≤ n; ++i)

 {for (j = i; j ≤ n; ++j)

 if (i = j || i + j = n + 1), sum = sum + B[i, j]

 }

❑3. Output: Print sum as the result of summation of

diagonal elements.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

60

PROGRAMMING CONSIDERATION

For top-right to left-bottom diagonal in C/C++:

 i + j = n – 1
 1 sholud be deducted from row index and

another 1 should be deducted from column

index.

 So, n+1-2 = n-1.

Therefore:

 i + j = n -1;

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

61

SAMPLE QUESTIONS OF THIS

CHAPTER

1. Define linear array with example.

2. Declare a linear array of size 5, store data and show (print)
them using code.

3. What is dynamic array? Give example.

4. Algorithms related to linear array.

5. What is two-dimensional array? Give example.

6. Write code to store (enter) data using a two-dimensional
array of size 3x4 and print them.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

62

SAMPLE QUESTIONS …..

7. How two-dimensional array can be

represented into computer’s memory?

Explain with example.

8. Algorithms related to two-dimensional

array.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

63

 Thank You.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

64

LECTURE 1

WEEK 4

SORTING AND SEARCHING ALGORITHMS:
LINEAR SEARCH, BINARY SEARCH

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

65

LECTURE 1

LINEAR SEARCH

❑Linear search is also called as sequential
search algorithm. It is the simplest
searching algorithm.

❑ In Linear search, we simply traverse the list
completely and match each element of the
list with the item whose location is to be
found. If the match is found, then the
location of the item is returned; otherwise,
the algorithm returns NULL.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

66

LECTURE 1

LINEAR SEARCH

❑ It is widely used to search an element from
the unordered list, i.e., the list in which items
are not sorted. The worst-case time
complexity of linear search is O(n).

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

67

LINEAR SEARCH PROCEDURE

The steps used in the implementation of Linear Search are
listed as follows -
•First, we have to traverse the array elements using a for loop.
•In each iteration of for loop, compare the search element
with the current array element, and -

• If the element matches, then return the index of the
corresponding array element.

• If the element does not match, then move to the next
element.

•If there is no match or the search element is not present in
the given array, return -1.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

68

LECTURE 1

LINEAR SEARCH ALGORITHM

Linear_Search(a, n, v
al) // 'a' is the given a
rray, 'n' is the size of
given array, 'val' is th
e value to search
Step 1: set pos = -1
Step 2: set i = 1
Step 3: repeat step 4
while i <= n
 Step 4: if a[i] == val
 set pos = i
 print pos

go to step 6
 [end of if]
 set i = i + 1
 [end of loop]
 Step 5: if pos = -1
 print "value is not
present in the array "
 [end of if]
Step 6: exit

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

69

LECTURE 1

BINARY SEARCH

❑Binary

Search Algorithm is

a searching

algorithm used in a

sorted array

by repeatedly dividing

the search interval in

half.

❑The idea of binary

search is to use the

information that the

array is sorted and

reduce the time

complexity to O(log N).

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

70

LECTURE 1

BINARY SEARCH PROCEDURE

❑Below is the step-by-step algorithm for Binary
Search:

• Divide the search space into two halves
by finding the middle index “mid”.

• Compare the middle element of the search space
with the key.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

71

LECTURE 1

BINARY SEARCH PROCEDURE

• If the key is found at middle element, the process
is terminated.

• If the key is not found at middle element, choose
which half will be used as the next search space.

• If the key is smaller than the middle element, then
the left side is used for next search.

• If the key is larger than the middle element, then
the right side is used for next search.

• This process is continued until the key is found or
the total search space is exhausted.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

72

LECTURE 1

BINARY SEARCH GRAPHICAL

REPRESENTATION

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

73

LECTURE 1

BINARY SEARCH GRAPHICAL

REPRESENTATION

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

74

LECTURE 1

THANK YOU

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

75

LECTURE 1

WEEK 5

SELECTION SORT, BUBBLE SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

76

LECTURE 1

SELECTION SORT

❑Selection Sort is a comparison-based sorting
algorithm. It sorts an array by repeatedly selecting
the smallest (or largest) element from the
unsorted portion and swapping it with the first
unsorted element. This process continues until the
entire array is sorted.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

77

LECTURE 1

SELECTION SORT PROCEDURE

1. First we find the smallest element and swap it
with the first element. This way we get the
smallest element at its correct position.

2. Then we find the smallest among remaining
elements (or second smallest) and swap it with the
second element.

3. We keep doing this until we get all elements
moved to correct position.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

78

LECTURE 1

SELECTION SORT ALGORITHM

❑Set MIN to location 0.

❑Search the minimum element in the

list.

❖ Swap with value at location MIN.

❖ Increment MIN to point to next element.

❑Repeat until the list is sorted.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

79

LECTURE 1

SELECTION SORT EXAMPLE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

80

LECTURE 1

COMPLEXITY OF SELECTION SORT

❑Time Complexity: O(n2) ,as there are two nested
loops:

• One loop to select an element of Array one by one
= O(n)

• Another loop to compare that element with every
other Array element = O(n)

• Therefore overall complexity = O(n) * O(n) =
O(n*n) = O(n2)

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

81

LECTURE 1

BUBBLE SORT

❑Bubble Sort is the simplest sorting algorithm that
works by repeatedly swapping the adjacent
elements if they are in the wrong order. This
algorithm is not suitable for large data sets as its
average and worst-case time complexity are quite
high.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

82

LECTURE 1

BUBBLE SORT

• We sort the array using multiple passes. After the
first pass, the maximum element goes to end (its
correct position). Same way, after second pass, the
second largest element goes to second last
position and so on.

• In every pass, we process only those elements that
have already not moved to correct position. After k
passes, the largest k elements must have been
moved to the last k positions.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

83

LECTURE 1

BUBBLE SORT

❑ In a pass, we consider remaining elements and compare all
adjacent and swap if larger element is before a smaller
element. If we keep doing this, we get the largest (among
the remaining elements) at its correct position.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

84

LECTURE 1

BUBBLE SORT ALGORITHM

❑Algorithm:

❑Sequential-Bubble-Sort (A)

❑fori ← 1 to length [A] do

❖for j ← length [A] down-to i +1

do

➢if A[A] < A[j-1] then

Exchange A[j] ⟷ A[j-1]

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

85

LECTURE 1

SAMPLE QUESTION

❑Analyze advantages and disadvantages of

selection sort and bubble sort

❑Analyze time complexity of bubble sort

❑Compare selection sort and bubble sort

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

86

LECTURE 1

THANK YOU

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

87

LECTURE 1

WEEK 6

INSERTION SORT, QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

88

LECTURE 1

INSERTION SORT

❑ Insertion sort is a simple sorting algorithm that
works by iteratively inserting each element of an
unsorted list into its correct position in a sorted
portion of the list. It is like sorting playing cards in
your hands. You split the cards into two groups:
the sorted cards and the unsorted cards. Then, you
pick a card from the unsorted group and put it in
the right place in the sorted group.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

89

LECTURE 1

INSERTION SORT PROCEDURE

• We start with second element of the array as first
element in the array is assumed to be sorted.

• Compare second element with the first element
and check if the second element is smaller then
swap them.

• Move to the third element and compare it with the
first two elements and put at its correct position

• Repeat until the entire array is sorted.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

90

LECTURE 1

INSERTION SORT PROCEDURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

91

LECTURE 1

INSERTION SORT ALGORITHM

❑Step 1 − If it is the first element, it is already

sorted. return 1;

❑Step 2 − Pick next element

❑Step 3 − Compare with all elements in the

sorted sub-list

❑Step 4 − Shift all the elements in the sorted

sub-list that is greater than the value to be
sorted

❑Step 5 − Insert the value

❑Step 6 − Repeat until list is sorted

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

92

LECTURE 1

INSERTION SORT ALGORITHM

❑Algorithm: Insertion-Sort(A)

❑for j = 2 to A.length

❖key = A[j]

❖i = j – 1

❖while i > 0 and A[i] > key

➢A[i + 1] = A[i]

➢i = i -1

❖A[i + 1] = key

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

93

LECTURE 1

INSERTION SORT ALGORITHM

❑Run time of this algorithm is very much
dependent on the given input.

❑If the given numbers are sorted, this
algorithm runs in O(n) time. If the given

numbers are in reverse order, the algorithm
runs in O(n2) time.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

94

LECTURE 1

QUICK SORT

❑QuickSort is a sorting algorithm based on
the Divide and Conquer that picks an element as a
pivot and partitions the given array around the
picked pivot by placing the pivot in its correct
position in the sorted array.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

95

LECTURE 1

HOW DOES QUICKSORT ALGORITHM WORK?

❑ QuickSort works on the principle of divide and conquer,
breaking down the problem into smaller sub-problems.

❑ There are mainly three steps in the algorithm:

1. Choose a Pivot: Select an element from the array as the
pivot. The choice of pivot can vary (e.g., first element, last
element, random element, or median).

2. Partition the Array: Rearrange the array around the pivot.
After partitioning, all elements smaller than the pivot will
be on its left, and all elements greater than the pivot will
be on its right. The pivot is then in its correct position, and
we obtain the index of the pivot.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

96

LECTURE 1

HOW DOES QUICKSORT ALGORITHM WORK?

3. Recursively Call: Recursively apply the same
process to the two partitioned sub-arrays (left and
right of the pivot).

4. Base Case: The recursion stops when there is only
one element left in the sub-array, as a single
element is already sorted.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

97

LECTURE 1

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

98

LECTURE 1

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

99

LECTURE 1

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

100

LECTURE 1

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

101

LECTURE 1

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

102

LECTURE 1

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

103

LECTURE 1

SAMPLE QUESTION

❑Advantage and Disadvantage of Insertion

Sort and Quick Sort

❑Analyze Time Complexity of Quick Sort

❑Compare all above Four Sort Technique.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

104

LECTURE 1

WEEK 6

STACKS AND QUEUES

PUSH, POP OPERATION OF A STACK.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

105

LECTURE 1

WEEK 8

STACKS AND QUEUES

ENQUEUE AND DEQUEUE OPERATION

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

125

LECTURE 1

THANK YOU

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

137

Linked Lists Operation:

Create, traverse, search, insert, and delete

operations in linked lists

Week 9

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

138

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

139

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

140

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

141

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

142

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

143

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

144

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

145

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

146

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

147

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

148

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

149

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

150

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

151

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

152

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

153

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

154

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

155

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

156

LECTURE 1

WEEK 10

LINKED LISTS OPERATION:

CREATE, TRAVERSE, SEARCH, INSERT,

AND DELETE OPERATIONS IN LINKED

LISTS

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

157

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

158

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

159

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

160

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

161

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

162

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

163

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

164

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

165

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

166

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

167

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

168

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

169

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

170

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

171

LECTURE 1

WEEK 11

LINKED LISTS OPERATION:

CREATE, TRAVERSE, SEARCH, INSERT,

AND DELETE OPERATIONS IN LINKED
LISTS

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

172

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

173

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

174

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

175

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

176

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

177

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

178

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

179

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

180

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

181

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

182

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

183

184

CIRCULAR LINKED LISTS

❑Last node references the first node

❑Every node has a successor

❑No node in a circular linked list contains

NULL

A circular linked list

185

CIRCULAR DOUBLY LINKED LISTS

❑Circular doubly linked list

❖ prev pointer of the dummy head node points to the

last node

❖ next reference of the last node points to the dummy

head node

❖ No special cases for insertions and deletions

186

CIRCULAR DOUBLY LINKED LISTS

 (a) A circular doubly linked list with a dummy head node

 (b) An empty list with a dummy head node

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

187

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

188

Partho Sarathi Sarker

Asst Professor: Dept. Of CSE

189

LECTURE 1

WEEK 12

TREES: TYPE, PROPERTIES

UNDERSTAND AND IMPLEMENT TREE

STRUCTURES AND THEIR TRAVERSAL

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

190

TREE DATA STRUCTURE
❑Tree data structure is a hierarchical structure that

is used to represent and organize data in a way
that is easy to navigate and search. It is a collection
of nodes that are connected by edges and has a
hierarchical relationship between the nodes.

❑The topmost node of the tree is called the root,
and the nodes below it are called the child nodes.
Each node can have multiple child nodes, and
these child nodes can also have their own child
nodes, forming a recursive structure.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

191

WHY TREE IS CONSIDERED A NON-LINEAR
DATA STRUCTURE?

❑The data in a tree are not stored in a sequential
manner i.e., they are not stored linearly. Instead,
they are arranged on multiple levels or we can say
it is a hierarchical structure.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

192

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

193

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

• Parent Node: The node which is an immediate
predecessor of a node is called the parent node of
that node. {B} is the parent node of {D, E}.

• Child Node: The node which is the immediate
successor of a node is called the child node of that
node. Examples: {D, E} are the child nodes of {B}.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

194

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

• Root Node: The topmost node of a tree or the
node which does not have any parent node is
called the root node. {A} is the root node of the
tree. A non-empty tree must contain exactly one
root node and exactly one path from the root to all
other nodes of the tree.

• Leaf Node or External Node: The nodes which do
not have any child nodes are called leaf nodes. {I,
J, K, F, G, H} are the leaf nodes of the tree.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

195

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

• Ancestor of a Node: Any predecessor nodes on
the path of the root to that node are called
Ancestors of that node. {A,B} are the ancestor
nodes of the node {E}

• Descendant: A node x is a descendant of another
node y if and only if y is an ancestor of x.

• Sibling: Children of the same parent node are
called siblings. {D,E} are called siblings.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

196

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

• Level of a node: The count of edges on the path
from the root node to that node. The root node has
level 0.

• Internal node: A node with at least one child is
called Internal Node.

• Neighbour of a Node: Parent or child nodes of that
node are called neighbors of that node.

• Subtree: Any node of the tree along with its
descendant.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

197

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

198

TYPES OF TREE DATA STRUCTURES:

• Binary tree: In a binary tree, each node can have a
maximum of two children linked to it. Some
common types of binary trees include full binary
trees, complete binary trees, balanced binary trees,
and degenerate or pathological binary trees.
Examples of Binary Tree are Binary Search Tree
and Binary Heap.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

199

https://www.geeksforgeeks.org/types-of-trees-in-data-structures

• Ternary Tree: A Ternary Tree is a tree data
structure in which each node has at most three
child nodes, usually distinguished as “left”, “mid”
and “right”.

• N-ary Tree or Generic Tree: Generic trees are a
collection of nodes where each node is a data
structure that consists of records and a list of
references to its children(duplicate references are
not allowed). Unlike the linked list, each node
stores the address of multiple nodes.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

200

https://www.geeksforgeeks.org/ternary-tree
https://www.geeksforgeeks.org/generic-treesn-array-trees

❑Binary Search Tree is a data structure used in
computer science for organizing and storing data in
a sorted manner. Binary search tree follows all
properties of binary tree and for every nodes,
its left subtree contains values less than the node
and the right subtree contains values greater than
the node. This hierarchical structure allows for
efficient Searching, Insertion,
and Deletion operations on the data stored in the
tree.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

201

BINARY SEARCH TREE
Partho Sarathi SArker

Asst Professor: Dept. Of CSE

202

PROPERTIES OF TREE DATA STRUCTURE:

• Number of edges: An edge can be defined as the
connection between two nodes. If a tree has N
nodes then it will have (N-1) edges. There is only
one path from each node to any other node of the
tree.

• Depth of a node: The depth of a node is defined as
the length of the path from the root to that node.
Each edge adds 1 unit of length to the path. So, it
can also be defined as the number of edges in the
path from the root of the tree to the node.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

203

PROPERTIES OF TREE DATA STRUCTURE:

• Height of a node: The height of a node can be
defined as the length of the longest path from the
node to a leaf node of the tree.

• Height of the Tree: The height of a tree is the
length of the longest path from the root of the tree
to a leaf node of the tree.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

204

PROPERTIES OF TREE DATA STRUCTURE:

❑Degree of a Node: The total count of subtrees
attached to that node is called the degree of the
node. The degree of a leaf node must be 0. The
degree of a tree is the maximum degree of a node
among all the nodes in the tree.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

205

LECTURE 1

WEEK 13

PRE-ORDER, IN-ORDER, POST-ORDER

REPRESENTATION

IMPLEMENT TREE TRAVERSAL

TECHNIQUES

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

206

TREE TRAVERSAL TECHNIQUES

❑Tree Traversal refers to the process of visiting or
accessing each node of the tree exactly once in a
certain order. Tree traversal algorithms help us to
visit and process all the nodes of the tree. Since
tree is not a linear data structure, there are
multiple nodes which we can visit after visiting a
certain node. There are multiple tree traversal
techniques which decide the order in which the
nodes of the tree are to be visited.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

207

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

208

INORDER TRAVERSAL
❑ Inorder traversal visits the node in the order: Left -

> Root -> Right

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

209

ALGORITHM FOR INORDER TRAVERSAL:
❑ Inorder(tree)
Traverse the left subtree, i.e., call Inorder(left->subtree)

Visit the root.

Traverse the right subtree, i.e., call Inorder(right->subtree)

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

210

PREORDER TRAVERSAL
❑Preorder traversal visits the node in the

order: Root -> Left -> Right

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

211

POSTORDER TRAVERSAL
❑Postorder traversal visits the node in the

order: Left -> Right -> Root

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

212

WEEK 14

GRAPHS: REPRESENTATION AND

ALGORITHMS

UNDERSTAND AND IMPLEMENT GRAPH

REPRESENTATIONS AND ALGORITHMS

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

213

❑A graph data structure is a collection of nodes that have
data and are connected to other nodes.

❑More precisely, a graph is a data structure (V, E) that
consists of

• A collection of vertices V

• A collection of edges E, represented as ordered pairs of
vertices (u,v)

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

214

❑V = {0, 1, 2, 3}

❑E = {(0,1), (0,2), (0,3), (1,2)}

❑G = {V, E}

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

215

GRAPH TERMINOLOGY

• Adjacency: A vertex is said to be adjacent to another
vertex if there is an edge connecting them. Vertices 2
and 3 are not adjacent because there is no edge
between them.

• Path: A sequence of edges that allows you to go from
vertex A to vertex B is called a path. 0-1, 1-2 and 0-2 are
paths from vertex 0 to vertex 2.

• Directed Graph: A graph in which an edge (u,v) doesn't
necessarily mean that there is an edge (v, u) as well. The
edges in such a graph are represented by arrows to
show the direction of the edge.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

216

GRAPH REPRESENTATION

❑Adjacency Matrix

❑An adjacency matrix is a 2D array of V x V

vertices. Each row and column represent a

vertex.

❑ If the value of any element a[i][j] is 1, it

represents that there is an edge connecting

vertex i and vertex j.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

217

❑The adjacency matrix for the graph we created

above is…

❑Since it is an undirected graph, for edge (0,2), we also
need to mark edge (2,0); making the adjacency matrix
symmetric about the diagonal.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

218

❑Adjacency List

❑An adjacency list represents a graph as an array of linked
lists.

❑The index of the array represents a vertex and each
element in its linked list represents the other vertices
that form an edge with the vertex.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

219

❑The adjacency list for the graph we made in the first
example is as follows:

❑An adjacency list is efficient in terms of storage because
we only need to store the values for the edges. For a
graph with millions of vertices, this can mean a lot of
saved space.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

220

LECTURE 1

TYPES OF GRAPH DATA STRUCTURE

❑ Finite Graph
❑ Infinite Graph
❑ Trivial Graph
❑ Simple Graph
❑ Multi Graph
❑ Null Graph
❑ Complete Graph
❑ Pseudo Graph

❑ ref: https://www.educba.com/types-of-
graph-in-data-structure/

❑ Regular Graph
❑ Bipartite Graph
❑ Labelled Graph
❑ Digraph Graph
❑ Subgraph
❑ Connected or

Disconnected Graph
❑ Cyclic Graph
❑ Vertex Labeled Graph
❑ Directed Acyclic Graph

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

221

LECTURE 1

WEEK 15
BREADTH FIRST SEARCH ALGORITHM(BFS),

APPLICATION

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

222

LECTURE 1

BREADTH FIRST SEARCH

❑Breadth First Search (BFS) is a
fundamental graph traversal algorithm. It begins
with a node, then first traverses all its adjacent.
Once all adjacent are visited, then their adjacent
are traversed.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

223

LECTURE 1

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

224

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

225

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

226

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

227

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

228

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

229

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

230

APPLICATIONS OF BFS IN GRAPHS

• Shortest Path Finding: BFS can be used to find
the shortest path between two nodes in an
unweighted graph. By keeping track of the parent
of each node during the traversal, the shortest
path can be reconstructed.

• Cycle Detection: BFS can be used to detect cycles
in a graph. If a node is visited twice during the
traversal, it indicates the presence of a cycle.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

231

APPLICATIONS OF BFS IN GRAPHS
• Connected Components: BFS can be used to

identify connected components in a graph. Each
connected component is a set of nodes that can be
reached from each other.

• Topological Sorting: BFS can be used to perform
topological sorting on a directed acyclic graph
(DAG). Topological sorting arranges the nodes in a
linear order such that for any edge (u, v), u appears
before v in the order.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

232

APPLICATIONS OF BFS IN GRAPHS
• Level Order Traversal of Binary Trees: BFS can

be used to perform a level order traversal of a
binary tree. This traversal visits all nodes at the
same level before moving to the next level.

• Network Routing: BFS can be used to find the
shortest path between two nodes in a network,
making it useful for routing data packets in
network protocols.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

233

WEEK 16
DEPTH FIRST SEARCH ALGORITHM(DFS),

APPLICATION

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

234

DEPTH FIRST SEARCH ALGORITHM

❑A standard DFS implementation puts each vertex of the
graph into one of two categories:

1. Visited

2. Not Visited

❑The purpose of the algorithm is to mark each vertex as
visited while avoiding cycles.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

235

DEPTH FIRST SEARCH ALGORITHM

❑The DFS algorithm works as follows:

1. Start by putting any one of the graph's vertices on top of
a stack.

2. Take the top item of the stack and add it to the visited
list.

3. Create a list of that vertex's adjacent nodes. Add the
ones which aren't in the visited list to the top of the
stack.

4. Keep repeating steps 2 and 3 until the stack is empty.

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

236

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

237

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

238

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

239

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

240

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

241

APPLICATION OF DFS ALGORITHM

1. For finding the path

2. To test if the graph is bipartite

3. For finding the strongly connected components of a
graph

4. For detecting cycles in a graph

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

242

LECTURE 1

THANK YOU

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

243

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Week 1
	Slide 8: DaTA Structue
	Slide 9: DaTA Structue
	Slide 10: Data Structure
	Slide 11
	Slide 12: Data Structure [contd.]
	Slide 13: Type Of Data Structure
	Slide 14: A Simple Question ?
	Slide 15: WEEk 2 Operation on Data Structure, Time-Space Complexity, Algorithm, Array definition
	Slide 16: Operations on Data Structure
	Slide 17: Algorithm
	Slide 18: ALGORITHM
	Slide 19: Program
	Slide 20: Program
	Slide 21: Complexity of algorithm
	Slide 22: Time complexity
	Slide 23: Space complexity
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Week 3 Arrays:Initialization, access, Types of Array, Array Addressing: Row major, Column Major
	Slide 29
	Slide 30
	Slide 31
	Slide 32: One Dimensional Array [contd.]
	Slide 33: One Dimensional Array [contd.]
	Slide 34: One Dimensional Array [contd.]
	Slide 35: Storing data to the array
	Slide 36: One Dimensional Array [contd.]
	Slide 37: Pointer and Dynamic Array
	Slide 38: Dynamic array
	Slide 39: Dynamic Array
	Slide 40: Dynamic Array
	Slide 41: To find out largest element
	Slide 42: To find out largest element
	Slide 43: Find out the summations of even and odd numbers
	Slide 44: Summation Of Numbers in Odd and even indices separately
	Slide 45: Types of Array
	Slide 46: Definition of two dimensional array
	Slide 47: Symbolic representation of Two Dimensional Array
	Slide 48: Two Dimensional Array
	Slide 49: Expression of Two dimensional array
	Slide 50: Expression [Cont…]
	Slide 51: To store and retrieve values in and from array
	Slide 52: ii) Direct insertion of data in two dimensional array
	Slide 53: Two dimensional array representation in memory
	Slide 54: Array representation in memory
	Slide 55: Location of an element(Array Addressing)
	Slide 56: Location of an element
	Slide 57: Location of an element
	Slide 58: Two dimensional array
	Slide 59: The Summation Of The Diagonal Elements
	Slide 60: Algorithm to find out summation of diagonal elements
	Slide 61: Programming consideration
	Slide 62: Sample questions of this chapter
	Slide 63: Sample questions …..
	Slide 64:
	Slide 65: Week 4 Sorting and Searching Algorithms: Linear Search, Binary Search
	Slide 66: Linear search
	Slide 67: Linear Search
	Slide 68: Linear Search procedure
	Slide 69: Linear Search Algorithm
	Slide 70: Binary Search
	Slide 71: Binary Search procedure
	Slide 72: Binary Search procedure
	Slide 73: Binary Search graphical representation
	Slide 74: Binary Search graphical representation
	Slide 75: Thank you
	Slide 76: Week 5 Selection Sort, Bubble Sort
	Slide 77: Selection Sort
	Slide 78: Selection Sort Procedure
	Slide 79: Selection Sort Algorithm
	Slide 80: Selection Sort Example
	Slide 81: Complexity of Selection Sort
	Slide 82: Bubble Sort
	Slide 83: Bubble Sort
	Slide 84: Bubble Sort
	Slide 85: Bubble sort Algorithm
	Slide 86: Sample Question
	Slide 87: Thank you
	Slide 88: Week 6 Insertion Sort, Quick Sort
	Slide 89: Insertion Sort
	Slide 90: Insertion Sort Procedure
	Slide 91: Insertion Sort Procedure
	Slide 92: Insertion Sort algorithm
	Slide 93: Insertion Sort algorithm
	Slide 94: Insertion Sort algorithm
	Slide 95: Quick sort
	Slide 96: How does QuickSort Algorithm work?
	Slide 97: How does QuickSort Algorithm work?
	Slide 98: Graphical Illustration of quick sort
	Slide 99: Graphical Illustration of quick sort
	Slide 100: Graphical Illustration of quick sort
	Slide 101: Graphical Illustration of quick sort
	Slide 102: Graphical Illustration of quick sort
	Slide 103: Graphical Illustration of quick sort
	Slide 104: Sample question
	Slide 105: Week 6 Stacks and Queues Push, Pop Operation of a Stack.
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125: Week 8 Stacks and Queues Enqueue and Dequeue operation
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137: Thank you
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157: Week 10 Linked Lists Operation: Create, traverse, search, insert, and delete operations in linked lists
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172: Week 11 Linked Lists Operation: Create, traverse, search, insert, and delete operations in linked lists
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: Circular Linked Lists
	Slide 185: Circular Doubly Linked Lists
	Slide 186: Circular Doubly Linked Lists
	Slide 187
	Slide 188
	Slide 189
	Slide 190: Week 12 Trees: type, properties Understand and implement tree structures and their traversal
	Slide 191: Tree data structure
	Slide 192: Why Tree is considered a non-linear data structure?
	Slide 193
	Slide 194: Basic Terminologies In Tree Data Structure
	Slide 195: Basic Terminologies In Tree Data Structure
	Slide 196: Basic Terminologies In Tree Data Structure
	Slide 197: Basic Terminologies In Tree Data Structure
	Slide 198: Basic Terminologies In Tree Data Structure
	Slide 199: Types of Tree data structures:
	Slide 200
	Slide 201
	Slide 202: Binary Search Tree
	Slide 203: Properties of Tree Data Structure:
	Slide 204: Properties of Tree Data Structure:
	Slide 205: Properties of Tree Data Structure:
	Slide 206: Week 13 Pre-order, in-order, post-order Representation Implement tree traversal techniques
	Slide 207: Tree Traversal techniques
	Slide 208
	Slide 209: Inorder traversal
	Slide 210: Algorithm for Inorder Traversal:
	Slide 211: Preorder traversal
	Slide 212: Postorder traversal
	Slide 213: Week 14 Graphs: Representation and Algorithms Understand and implement graph representations and algorithms
	Slide 214
	Slide 215
	Slide 216: Graph Terminology
	Slide 217: Graph Representation
	Slide 218
	Slide 219
	Slide 220
	Slide 221: Types of Graph Data Structure
	Slide 222: WEEK 15 Breadth First Search Algorithm(bFS), Application
	Slide 223: Breadth First Search
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231: Applications of BFS in Graphs
	Slide 232: Applications of BFS in Graphs
	Slide 233: Applications of BFS in Graphs
	Slide 234: Week 16 Depth First Search Algorithm(DFS), Application
	Slide 235: Depth First Search Algorithm
	Slide 236: Depth First Search Algorithm
	Slide 237: Depth First Search Algorithm procedure
	Slide 238: Depth First Search Algorithm procedure
	Slide 239: Depth First Search Algorithm procedure
	Slide 240: Depth First Search Algorithm procedure
	Slide 241: Depth First Search Algorithm procedure
	Slide 242: Application of DFS Algorithm
	Slide 243: Thank you

