Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Corse Title: DATA STRUCTURE

Partho Sarathi Sarker
Asst. Professor: Dept. Of CSE

LECTURE 1

Course Learning Outcome (CLOs): After Completing this course successfully, the
student will be able to...

CLO1

CLO2

CLO3

CLO4

CLO5

Describe the fundamental concepts of data structures and their applications in various domains.

Understand the basic and advanced data structures, and be able to analyse their time and space
complexity.

Create and implement basic and advanced data structures using programming languages like
C++, Java, or Python.

Apply appropriate data structures to solve real-world problems, such as file structures, symbol
tables, and network data structures.

Identify and select appropriate data structures and algorithms to solve a given problem based on
its requirements and constraints.

Summary of Course Content

Sl. No. COURSE CONTENT HRs CLOs

1 Introduction to Data Structures: Overview of data structures, Types of data 3 CLO1
structures: linear and nonlinear, Arrays and linked lists, Stacks and queues, Trees and CLO2
graphs

2 Overview and Types of data structures: Arrays and linked lists, Stacks and queues, 4 CLO3

Implementation of basic data structures, Operations on basic data structures, Time
and space complexity analysis
3 Arrays and linked lists: Sorting algorithms: bubble sort, insertion searching 9 CLO4
algorithms: linear search, binary search. Struct Variable, Link list Creation, Insertion,
Deletion, searching, traversing

4 Stacks and queues: push,pop , enque, dequue function definition, overflow, 7 CLO4
underflow condition, design stack and queue with array and analyse various condition CLO5
5 Nonlinear Data Structures: Trees, Type of Trees, Tree Representation, Graphs, Type of 7 CLO5

Graphs, Graph representation, BFS, DFS, Pre-order, in-order, post-order search.

Recommended Books:
1. "Data Structures and Algorithm Analysis in C++" by Mark A. Weiss
2. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

3. "Data Structures Using C" by Reema Thareja

ASSESSMENT PATTERN

CIE- Continuous Internal Evaluation (90 Marks)

Bloom's Categor Tests Assignments Quizzes Attendance
Marks (out of 90 (45) 15) (15) (15)
Remember 5 03

Understand 5 04 05

Apply 15 05 05

Analyze 10

Evaluate 5 03 05

Create 5

SEE- Semester End Examination (60 Marks)

Bloom's Category Test
Remember 1
Understand 1

Apply 20
Analyze 15
Evaluate 6

Create 5

Introduction to Data Structures: Lecture, multimedia,

. . discussion
Describe concepts, importance, and types
of data structures
Operation on Data Structure, Time-Space Lecture, multimedia,
Complexity, Algorithm, Array definition examples

Arrays:Initialization, access, Types of Array, Lecture, multimedia,

Array Addressing: Row major, Column Major examples

Sorting and Searching Algorithms: Linear Lecture, multimedia,

Search, Binary Search examples

Sorting and Searching Algorithms: Selection Lecture, multimedia,

Sort, Bubble Sort on practice

Sorting and Searching Algorithms: Insertion Lecture, multimedia,

Sort, Quick Sort on practice

Stacks and Queues, Array Implementation of Lecture, multimedia,

Stack Push, Pop Operation of a Stack. on practice
Stacks and Queues Lecture, multimedia,
on practice

Fnaueue and Deaueue oberation

group Feedback, Q&A,
assessment of
LOs

practical Feedback, Q&A,
quizzes

practical Feedback, Q&A,
quizzes

practical Feedback, Q&A,
quizzes

hands- Midterm Quiz #1,
assessment of

LOs
hands-

hands- Feedback, Q&A,
lab assignments

hands- Feedback, Q&A,
lab assighments

CLO1

CLO2

CLO2

CLO2

CLO1

CLO2

CLO2, CLO3

CLO2, CLO3

Linked Lists Operation: Lecture, multimedia,

) hands-on practice
Create, traverse, search, insert, and delete

operations in linked lists
Linked Lists Operation: Lecture, multimedia,

) hands-on practice
Create, traverse, search, insert, and delete

operations in linked lists

Trees: type, properties Lecture, multimedia,
Understand and implement tree structures hands-on practice
and their traversal

Pre-order, in-order, post-order Representation Lecture, multimedia,

) hands-on practice
Implement tree traversal techniques

Graphs: Representation and type Lecture, multimedia,
hands-on practice

Breadth First Search Algorithm(BFS), Application Lecture, multimedia,
hands-on practice

Depth First Search Algorithm(DFS), Application Lecture, multimedia,
hands-on practice

Feedback, Q&A, lab CLO2, CLO3
assignments

Feedback, Q&A, lab CLO2, CLO3
assignments

Feedback, Q&A, lab CLO2, CLO3
assignments

Midterm Quiz #2, CLO2-CLO5
lab assignments

Feedback, Q&A, lab CLO2-CLO5
assignments

Final Exam, lab CLO2-CLO5
assignments

Final Exam, lab CLO2-CLO5
assignments

LECTURE 1

WEEK 1

Introduction to Data Structures:
Overview of data structures,
Types of data structures: linear
and nonlinear, Arrays and linked
lists, Stacks and queues, Trees
and graphs

DATA STRUCTUE

Let us start with questions:

1. What is Data?

2. What is Structure?

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DATA STRUCTUE

Data means raw facts or information that
can be processed to get results or
products.

Some elementary items constitute a unit
and that unit may be considered as a

structure.

< A structure may be treated as a frame or pro-forma
where we organize some elementary items in different
ways.

LECTURE 1

DATA STRUCTURE

dData structure is a structure where we
organize elementary data items in
different ways and there exits structural

relationship among the items.
<+ That means, a data structure is a means of
structural relationships of elementary data

items for storing and retrieving data in
computer’s memory.

LECTURE 1 10

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Data Structure [Cont..]

Usually elementary data items are the
elements of a data structure.

However, a data structure may be an
element of another data structure. That
means a data structure may contain
another data structure.

11

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DATA STRUCTURE contp.]

d Example of Data Structures:

< Array, Linked List, Stack, Queue, Tree, Graph, Hash
Table etc.

A Types of elementary data item:
< Character, Integer, Floating point humbers etc.

d Expressions of elementary data in C/C++

O Elementary data item - Expression in C/C++
< Character - char
< Integer - int
< Floating point number - float

d

LECTURE 1 12

Primitive
Data Structures

Integer

Float

Character

Boolean

LECTURE 1

Data

Structures

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TYPE OF DATA STRUCTURE

Types of Data Structures

Static

Array

Linear

MNon-Pnmitive
Data Structures

MNon-Linear
Data ctu

Dynamic

Tree

Graph

Linked
List

Stack

CQueue

18

A SIMPLE QUESTION ?

What are the major (basic) operations
that can be performed on data
structure?

LECTURE 1

14

WEEK 2
OPERATION ON DATA STRUCTURE, TIME-
SPACE COMPLEXITY, ALGORITHM, ARRAY
DEFINITION

LECTURE 1

15

OPERATIONS ON DATA STRUCTURE

Basic:

dinsertion (addition)
ddeletion (access)
dsearching (locate)
Additional (special):
dsorting

dmerging etc

LECTURE 1

16

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ALGORITHM

dSet of instructions that can be followed to
perform a task. In other words sequence
of steps that can be followed to solve a
problem.

dTo write an algorithm we do not strictly
follow grammar of any particular
programming language.

dHowever its language may be near to a
programming language.

LECTURE 1 17

ALGORITHM

d Each and every algorithm can be divided into
three sections.

< First section is input section, where we show which
data elements are to be given.

< The second section is very important one, which is

operational or processing section. Here we have
to do all necessary operations, such as computation,
taking decision, calling other procedure (algorithm) etc.

< The third section is oUtpUt, where we display the
result found from the second section.

LECTURE 1 18

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

PROGRAM

d Sequence of instructions of any programming
language that can be followed to perform a
particular task.

dLike an algorithm generally a program has three
sections such as input, processing and output.

LECTURE 1 19

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

PROGRAM

d1In a program usually we use a large amount of
data. Most of the cases these data are not
elementary items, where exists structural
relationship between elementary data items.

< That means the programs uses data structure(s).

d For a particular problem (usually for complex
problem), at first we may write an algorithm
then the algorithm may be converted into a
program.

LECTURE 1 20

COMPLEXITY OF ALGORITHM

dTwo types of complexities:

<+ Time complexity

<+Space complexity.

LECTURE 1

21

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TIME COMPLEXITY

dThis complexity is related to execution
time of the algorithm.

3It depends on the humber of element
(item) comparisons and number of
element movement (movement of data
from one place to another).

LECTURE 1

y./]

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

SPACE COMPLEXITY

dThis complexity is related to space
(memory) needs in the main memory
for the data set used to implement
the algorithm.

dThat means if there n data items
used in an algorithm, the space
complexity of the algorithm will be
proportional to n.

LECTURE 1 23

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Symbolic Notation for Time Complexity

dThe complexity of an algorithm (either
time complexity or space complexity) is
represented using asymptotic notations.

dOne of the asymptotic notations is O (big-
oh) notation.

dBig-oh (O) notation is also called upper
bound of the complexity.

LECTURE 1 24

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Symbolic Notation

-
E< logn < WA <n¢nl¢gn<aatn9dn“4-—— <2'2430 <an] .

—-

Lowerc Gppere
Oomd A«ny_(;y i Bomd
Oownd y n3
n 2
/5
leyn

B«-H (obhe =3 Lowrc Bounc, - - Bngvga /Vo»/a/fon_

| A»mqy@[ue—) Awnye lound = Q) 7Irev/a Nofafron

Worst- (ase > Uppere Bovnd = L} Bﬁ'd‘ JYedairon -

LECTURE 1

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Sample Questions of this chapter

1.Define data and data structure with example.

2. What are the elementary data items ? Give
example.

3. What is data structure? What are the major
operations that can be performed on data
structure?

4. What is the difference between an algorithm and
a program?

LECTURE 1 26

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

5. What do you mean by time and space
complexities?
6. A data structure may be an element of

another data structure. Explain this
statement with example.

/. There are three sections in an algorithm,
name these sections. Which one is most
important ? Explain.

LECTURE 1 y.74

WEEK 3
ARRAYS:INITIALIZATION, ACCESS, TYPES
OF ARRAY, ARRAY ADDRESSING: ROW
MAJOR, COLUMN MAJOR

LECTURE 1 28

DEFINITION OF AN ARRAY

dAn array is a finite set of same type of data items.

In other words, it is a collection of homogeneous data
items (elements).

dThe elements of an array are stored in successive
memory locations.

dAny element of an array is referred by array name
and index number (subscript).

dThere may have many dimensional arrays. But usually
two types of array are widely used; such as

<one dimensional (linear) array and
<+two dimensional array.

29 29

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TYPES OF ARRAY

One Dimensional
Array

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ONE DIMENSIONAL ARRAY

d An array that can be represented by only one
dimension such as row or column and that holds
finite number of same type of data items is
called one dimensional (linear) array.

1 2 3 4 5 6 7 8 9 10
Array B—>| 0 10 (12 | 13 | 19 | 20 | 18 | 23 | 29 | 39

Figure 2.1: Graphical representation of one dimensional array.

Here 1,2, 3,10 are index number,and 0, 10,12, 39
are data items or elements of the array and B is the array name.

31

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ONE DIMENSIONAL ARRAY coxre.

dSymbolically an element of the array is
expressed as B, or B[i], which denotes ith
element of the array, B.

QThus B[4], B[9] denotes respectively the 4th
element and the 9t" element of the array, B.

dThe name of the array usually is a name
constituted by one or more characters.

A Thus array name may be A, S, Stock, Array1
etc.

dThe element of an array may be number
(integer or floating point number) or

rRharactAar

32

ONE DIMENSIONAL ARRAY (conm.;

d Expression of one dimensional array in
C/C**:
< For integer array:
int a[10];
< For character array:
char b[30];

< For floating point array:
float B[10];

float B[10];

| d T t |
Data Type Array Name Array Size

Ciatire 2 2 Daclaratinn af Arravs in C/CTT

33

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ONE DIMENSIONAL ARRAY icowm.;

Store an element into an array
+B[4] = 19;

it means 19 will be stored in the cell number 4 or 5 of the
array of B.

If there is any (previous) value that will be overwritten.

Read (retrieve) a value (element) from an array
+X = B[6];

it means the value of x will be 20, if the cell

number 6 or 7 of the array, B contains 20.

34

STORING DATA TO THE ARRAY

dCode in C/C++ for storing data in an array
<+int x[10];
“for (i =0; 71 <10; ++i)
scanf (“%d”, &x[i]);

Since the size of the array is 10, so we should
enter data to the array 10 times.

That is why we use a loop of 10 times using a
variable i.

C/C++ language starts indexing from O (zero), so
the loop also starts from O (zero).

35

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ONE DIMENSIONAL ARRAY icovm.;

dCode in C/C++ for accessing data from an array
and the data will be displayed on the monitor’s
screen:
int x[10];
for (i =0; i < 10; ++1i)
printf (“%d”, x[i]);

36

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

POINTER AND DYNAMIC ARRAY

We can declare a pointer as follows:

int *a;

Here a is pointer variable that point integer
type data.

Similarly we can declare pointer for other types
of data.

Using pointer and keyword, now we can declare
dynamic array.

37

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DYNAMIC ARRAY

Dynamic array declaration:
int *a;
a= new int [5];

38

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DYNAMIC ARRAY

Variable can be used for size of the array.
Such as:

int s, *a;
cin>>s;
a= new int [s];

Size can be increased also:
s=s+1;

39

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DYNAMIC ARRAY

Entering data to an array:
ints, i,*a;

cin>>s;

a= new int [s];

for(i =0;i<s;++i)
cin>>ali];

40

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TO FIND OUT LARGEST ELEMENT

dProblem 2.1:

< Given a list of elements, write an algorithm to store the list of elements

(numbers) in an array and find out the largest element of the list.

EllAlgorithm 2.1: Algorithm to search the largest element of a

ist

1. Input: x[1...n];

2. for (i=1;1<n; ++)

store data to x[i];
3. large = x[1];
4. for (i =2; i< n; ++i)
if (x[i] > large), large = X[i];
5. Output: the largest number is, large

41

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TO FIND OUT LARGEST ELEMENT

Code for algorithm 2.1 in C/C++
int x[10],i, large;
cout<< “Enter data to the array:”;
for (i=0;i<10; ++i1)

{

cin>>x[i];

3
large = x[0];
for (i=1;1<10; ++i)

if (x[i] > large), large = x[i];

cout<<“the largest is:”<< large;

42

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

FIND OUT THE SUMMATIONS OF
EVEN AND ODD NUMBERS

dAlgorithm 2.3: Algorithm to find the
summation of even and odd numbers
1. Input: A[1...n], sum_odd = 0, sum_even = 0;
//An array and variables to store the summation
2. for (i=1;1i<n; ++i)
{
if (A[i] %2 ==0),
sum_even = sum_even + Ali];
else
sum_odd = sum_odd + A[i];
3
3. Output: Summation of odd numbers, sum_odd
and summation of even numbers, sum_even)

43

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

SUMMATION OF NUMBERS IN ODD AND
EVEN INDICES SEPARATELY

dAlgorithm 2.4: Algorithm to find the
summation of even and odd indexed numbers
1. Input: A[1...n], sum_odd = 0, sum_even = 0;
//An array and variables (to store the summation)
2. for(i=1;i<n; ++i)

d

if (i% 2 ==0), sum_even = sum_even + Ali];
else sum_odd = sum_odd + Ali];

}

3. Output: Summation of humbers in odd indices, sum_odd
and summation of humbers in even indices, sum_even.

44

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TYPES OF ARRAY

Two Dimensional Array

45

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEFINITION OF TWO DIMENSIONAL ARRAY

< Two dimensional array is an array that has two dimensions, such as
row and column.

< Total number of elements in a two dimensional array can be
calculated by multiplication of the humber of rows and the number
of columns.

< If there are m rows and n columns, then the total number of
elements is m x n, and m x n is called the size of the array.

< Of course, the data elements of the array will be same type.

< In mathematics, the two dimensional array is called a matrix and in
business it is called table.

46

SYMBOLIC REPRESENTATION OF
TWO DIMENSIONAL ARRAY

A two dimensional array can be represented
using symbols as follows:

A,or All,j] forl<i<mandl< j<n

Where m 1s the number of rows and
n I1s the number of columns.

All...m1l....n]

m rows n columns

47

TWO DIMENSIONAL ARRAY

Array B

1 2 3 4 5 6 71 8

1 |0 |10 | 12| 13 |19 | 20 | 18 | 23

2 |56 | 51 |62| 73| 79|70 | 8 | 63

3 Size = 6 x 8

4 75— — Cell
B[4][0]

5

6 | 20 | 31 | 32 | 33 | 39 | 40 | 48 | 33

Figure 2.4: Graphical representation of two dimensional array

48

EXPRESSION OF TWO DIMENSIONAL
ARRAY

Two dimensional array can be expressed in C/C++
as follows:
int A[5][4];
Here int is the type of the array,
A is the name of the array,
5 is the number of rows and
4 is the number of columns.

The type of the array is integer means the data of the array are
integers.

49

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

EXPRESSION [CONT...]

Another Example of expression:
Float B[40][4];

Data Type Number
of rows

Name of Number of
the Array columns

50

TO STORE AND RETRIEVE VALUES IN AND FROM
ARRAY

Data can be stored in a two dimensional array using
loop or directly as shown below:

i) storing data taken from keyboard

int B[7][3];
for (int1=0;1<7; ++ 1)

{
for (intj=0;j < 3; ++J)
scanf (“%d”, &B[i][j]);
3

51

II) DIRECT INSERTION OF DATA IN TWO
DIMENSIONAL ARRAY

Qint B[7][3] = {
¥/1,///2://3},
{9, 10, 113},
£22, 25, 40}

3

52

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TWO DIMENSIONAL ARRAY REPRESENTATION IN
MEMORY

dThe elements of a two dimensional array are
stored in computer’s memory row by row or
column by column.

A If the array is stored as row by row, it is
called row-major order.

QIf the array is stored as column by column, it
is called column-major order.

d Suppose there is a two-dimensional array of
size 5 x 6. That means, there are 5 rows and
6 columns in the array.

53

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ARRAY REPRESENTATION IN MEMORY

QIn row-major order, elements of a two
dimensional array are ordered as -

EIA11: A12: A13: A14: A15’ A16’ A21’ A22’ A23’ A24:
A25, A26, A31’ oooooooooooo 9 A46, A51’ A52,

Qand in column-major order, elements are
ordered as -

EIA11: A21’ A31’ A41: A51: A12’ AZZ’ A32: A42: A52’
A13, oooooooooooo 9 A55’ A16, A26, ooooooo ,A56.

54

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

LOCATION OF AN ELEMENT(ARRAY
ADDRESSING)

d Location of an element of a two-dimensional
array

<« Row-major Order:
If Loc (A[i, j]) denotes the location in the memory of the
element A[i][j] or Aij, then in row-major order -
Loc (A[i, j]) =Base (A)+(n (i-1)+(G-1)) *w;
Here Base (A) is starting or base address of the array A, n is

the number of columns and w is the width of each cell, i.e,
number bytes per cell.

55

LOCATION OF AN ELEMENT

A Column-major Order:

< In column-major order,
Loc (A[i, j])=Base (A)+ (m (j-1)+(i-1))*w;
< Here Base (A) is starting or base address of the
array A, m is the number of rows and w is the
cell width.

56

LOCATION OF AN ELEMENT

dExample:
+Base address, Base (A) = 100, Size of the array =5 x 6. If the type
of array is integer then find Loc (A[4, 3]).
dSolution:

(2 bytes for each integer cell in C/C++)
If the array is stored in row-major order:
Loc (A[4, 3]) =Base (A)+(n(i-1)+(j-1))* 2
=100+ (6 x 3 +2)* 2
=100 + 40
= 140

If the array is stored in memory in column-major order:
Loc (A[4, 3]) =Base (A)+m (j-1)+(i-1)*2
=100 + (5 x 2+ 3)* 2
=100 + 26
=126

57

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TWO DIMENSIONAL ARRAY

Operations on two dimensional
array

58

THE SUMMATION OF THE DIAGONAL ELEMENTS

Array B[n][n]

Rows =5 j 1 2 3 4 5
—

Columns =53 1 itj=n+l

i

Figure 2.9: Diagonal elements of a two-dimensional array. %

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

ALGORITHM TO FIND OUT SUMMATION OF DIAGONAL ELEMENTS

1. Input: B[1 .. .n, 1...n], sum = 0;
//a two dimensional array

2. Find each diagonal element and add them
for (i = 1; 1 < n; ++i)
ffor j=1; j<n; ++j)
ifi=j||i1+j=n+1), sum=sum + BJ[i, j]

3

3. Output: Print sum as the result of summation of
diagonal elements.

60

PROGRAMMING CONSIDERATION

For top-right to left-bottom diagonal in C/C++:
i+j=n-1
1 sholud be deducted from row index and
another 1 should be deducted from column

index.
So, n+1-2 = n-1.
Therefore:;
i+j=n-1;

61

SAMPLE QUESTIONS OF THIS
CHAPTER

1. Define linear array with example.

2. Declare a linear array of size 5, store data and show (print)
them using code.

3. What is dynamic array? Give example.
4. Algorithms related to linear array.
5. What is two-dimensional array? Give example.

6. Write code to store (enter) data using a two-dimensional
array of size 3x4 and print them.

62

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

SAMPLE QUESTIONS

7. How two-dimensional array can be
represented into computer’s memory?
Explain with example.

8. Algorithms related to two-dimensional
array.

63

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Thank You.

64

WEEK 4
SORTING AND SEARCHING ALGORITHMS:
LINEAR SEARCH, BINARY SEARCH

LECTURE 1 65

LINEAR SEARCH

dLinear search is also called as sequential
search algorithm. It is the simplest

searching algorithm.

dIn Linear search, we simply traverse the list

completely and match each element of t
list with the item whose |location Is to
found. If the match is found, then t

ne
ol

1S

location of the item iIs returned; otherwise,

the algorithm returns NULL.

LECTURE 1

66

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

LINEAR SEARCH

It i1s widely used to search an element from
the unordered list, I.e., the list In which items
are not sorted. The worst-case time

complexitv of linear search is O(n).
(a) Searching for 31

vy

star 10} [5:1] [;] [;8] (4 || G2 13)|(5)|(23]|(64)|(29]

- 5 6 7 8 9 10

(b) Searching for 8

. - b - b J’ b - . - . e - & . - - #
v v v . v v . L) L L) v .
L L L) L Voo [Ly [L
\ A 1A VAN TAN TAN TN VAN T |

[:1:] L2J|Ue)jle Jietilrs)|(s Jj(=e)f(e4)][22]

2 3 4 5 6 7 8 9 10

Ty

(o)

LECTURE 1 67

X

start

LINEAR SEARCH PROCEDURE hsst Professor: Dept, Of CSE

ILLimear Search

* FElemernrt to Searcht - 8

-r - I 12 I 25 8 10 I 32 I |=:> 12 == 8 (Does not Match. So

-2 - I 12 I 25 I 8 I 10 I 32 I |$. 28 = 8 (Does not Match. So C«

-3 - 12 25 I 8 I 10 32 |=:> S =88 (It Matches. So it returi
| | index of 8 i.e. 2)

The steps used in the implementation of Linear Search are
listed as follows -

First, we have to traverse the array elements using a for loop.

‘In each iteration of for loop, compare the search element
with the current array element, and -

- If the element matches, then return the index of the
corresponding array element.

- If the element does not match, then move to the next
element.

If there is no match or the search element is not present in

B B F OE . 2 FrF E 5 F . B 3 -

68

LINEAR SEARCH ALGORITHM

Linear_Search(a, n,v | go to step 6

al) // 'a' is the given a lend of if]
rray, 'n'is the size of
given array, 'val' is th
e value to search

Step 1. set pos = -1
Step 2:set | =1
Step 3. repeat step 4
while 1 <=n

Step 4: if a[i] == val
LECTURE 1 set pos = | 69

seti=1+1
[end of loop]
Step 5: If pos = -1
print "value Is not
present In the array "

[end of If]
Step 6: exit

BINARY SEARCH

dBinary
Search Algorithm is
a searching
algorithm used in a
sorted array
by repeatedly dividing
the search interval in
half.

LECTURE 1

 The idea of binary
search Is to use the
Information that the
array is sorted and
reduce the time

complexity to O(log N).

70

BINARY SEARCH PROCEDURE

d Below is the step-by-step algorithm for Binary
Search:

* Divide the search space into two halves
by finding the middle index “mid”.

» Compare the middle element of the search space
with the key.

LECTURE 1

71

BINARY SEARCH PROCEDURE

 |f the key is found at middle element, the process
Is terminated.

 |f the key is not found at middle element, choose
which half will be used as the next search space.

- |If the key is smaller than the middle element, then
the left side is used for next search.

- |If the key is larger than the middle element, then
the right side is used for next search.

* This process is continued until the key is found or
the total search space is exhausted.

LECTURE 1

;-

BINARY SEARCH GRAPHICAL s roiesior: e of s

REPRESENTATION

Boeoarcba S l

Sir=t+ o | loa=+
\V % \
o 1 D = < = = 7 = A o
e BT 7T = (o] [o] e bapal
fre need +o =earch here Cir=+ MI\T/I lon=t
\% \

la] 1 = <f = L= 7 = A o Ti

o~ (=] 7]‘:'FO‘|:"D[:[£‘J ”:E'qﬁ

e (B IR TS S TH T RS pE

laast+ ic=+

o [= J[[?IIOTO

LECTURE 1

BINARY SEARCH GRAPHICAL

REPRESENTATION

L M R

l l l
OBOOnoE

Ju M R

Vo

15 22 34 36

LMR

l

15 22 34 36 51 63 75

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

|
|
|'

i

THANK YC

5 l]
‘

] 7
i ; F 2 1 J

LECTURE 1

WEEK 5
SELECTION SORT, BUBBLE SORT

76

SELECTION SORT

1 Selection Sort is a comparison-based sorting
algorithm. It sorts an array by repeatedly selecting
the smallest (or largest) element from the
unsorted portion and swapping it with the first

unsorted element. This process continues until the
entire array is sorted.

LECTURE 1 N

SELECTION SORT PROCEDURE

1. First we find the smallest element and swap it
with the first element. This way we get the
smallest element at its correct position.

2. Then we find the smallest among remaining
elements (or second smallest) and swap it with the

second element.

3. We keep doing this until we get all elements
moved to correct position.

LECTURE 1 78

SELECTION SORT ALGORITHM

Aer//MIIN/ to location 0.

JSearch the minimum element in the
1/i/E8id .

% Swap with value at location MIN.

% Increment MIN to poilint to next element.

JRepeat until the list is sorted.

LECTURE 1

79

SELECTION SORT EXAMPLE

STEP 1.

STEP 2.

STEP 3.

STEP 4.

LECTURE 1

2 4 |7 — = 214 7
ﬁ min element Sorted Array Unsorted Array
2 57| == |[2]a]s 7

80

COMPLEXITY OF SELECTION SORT

d Time Complexity: O(n?) ,as there are two nested
loops:

* One loop to select an element of Array one by one
= O(n)

» Another loop to compare that element with every
other Array element = O(n)

» Therefore overall complexity = O(n) * O(n) =
O(n*n) = O(n?)

LECTURE 1

81

BUBBLE SORT

J Bubble Sort is the simplest sorting algorithm that
works by repeatedly swapping the adjacent
elements if they are in the wrong order. This
algorithm is not suitable for large data sets as its

average and worst-case time complexity are quite
high.

LECTURE 1 82

BUBBLE SORT

* We sort the array using multiple passes. After the
first pass, the maximum element goes to end (its
correct position). Same way, after second pass, the
second largest element goes to second last
position and so on.

* |n every pass, we process only those elements that
have already not moved to correct position. After k
passes, the largest k elements must have been
moved to the last k positions.

LECTURE 1 83

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

BUBBLE SORT

O In a pass, we consider remaining elements and compare all
adjacent and swap if larger element is before a smaller
element. If we keep doing this, we get the largest (among
the remaining elements) at its correct position.

Bubble sort example
Iniitial IsSEsSalrss&aliEaaliail Initial Unsorted array
v W B
Step 1 N = | 4 | e | Compare 1= and 27°
{-"’ \.' (Swap)
Step 2 5 s s a3 & Compare 27 and 377
_—— (Do not Swap)
i 3 ¥ - -
Step 3 | 32] S BEESINESE & | Compare 3" and 4
. (Swap)
L - =~ <
Step 4 | 2] 5 | a I Compare 4 and S’
(Swap)
Step S = = = (= 8 Repeat Step 1-5 until
Nno More swaps required 84

BUBBLE SORT ALGORITHM

JAlgorithm:
JdSequential-Bubble-Sort (A)

Jdfori « 1 to length [A] do

“for J « length [A] down-to 1 +1
do

1f A[A] < A[jJ-1] then
Exchange A[j] ¢ A[]-1]

LECTURE 1

85

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

SAMPLE QUESTION

d Analyze advantages and disadvantages of
selection sort and bubble sort

d Analyze time complexity of bubble sort
d Compare selection sort and bubble sort

LECTURE 1

86

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

|
|
|'

i

THANK YC

5 l]
‘

] 7
i ; F 2 1 J

LECTURE 1

WEEK 6
INSERTION SORT, QUICK SORT

88

INSERTION SORT

dInsertion sort is a simple sorting algorithm that
works by iteratively inserting each element of an
unsorted list into its correct position in a sorted
portion of the list. It is like sorting playing cards in
your hands. You split the cards into two groups:
the sorted cards and the unsorted cards. Then, you
pick a card from the unsorted group and put it in
the right place in the sorted group.

LECTURE 1 89

INSERTION SORT PROCEDURE

* We start with second element of the array as first
element in the array is assumed to be sorted.

 Compare second element with the first element
and check if the second element is smaller then
swap them.

* Move to the third element and compare it with the
first two elements and put at its correct position

Repeat until the entire array is sorted.

LECTURE 1 90

STEP 1.

STEP 2.

STEP 3.

STEP 4.

LECTURE 1

INSERTION SORT PROCEDURE

~J

4 15

2

2

here checking on
left side of &.

2

e

-

here checking on
left side of 4

Mo element on left side
of 7,50 no change inits

==

4

here checking
on left side of

=" As 724 therfore 7 will

be moved forward and 4
will be moved to 7's
position.

As 7=5,7 will be moved
forvard,but 4 <5,50 no
change in position of 4.
And 5 will be moved to
position of 7.

As all the element on left side
of 2 are greater than 2,50 all
the elements will be moved
forward and 2 will be shifted
to position of 4

91

INSERTION SORT ALGORITHM

dStep 1 — If it is the first element, it is already
sorted. return 1;

JStep 2 — Pick next element

Step 3 — Compare with all elements in the
sorted sub-list

JStep 4 — Shift all the elements in the sorted
sub-list that is greater than the value to be
sorted

JStep 5 — Insert the value
JStep 6 — Repeat until list is sorted

LECTURE 1 9%

INSERTION SORT ALGORITHM

JAlgorithm: Insertion-Sort (A)
dfor j = 2 to A.length

“key = A[7]

SallE11]1H 1L

“while 1 > 0 and A[1] > key
Al + 1] = A[1i]
HEIEIAL

A1 + 1] = key

LECTURE 1

93

INSERTION SORT ALGORITHM

JRun time of this algorithm is very much
dependent on the given input.

A If the given numbers are sorted, this
algorithm runs in O(n) time. If the given

numbers are in reverse order, the algorithm
runs in O(n?) time.

LECTURE 1 94

QUICK SORT

[QuickSort is a sorting algorithm based on
the Divide and Conquer that picks an element as a
pivot and partitions the given array around the

picked pivot by placing the pivot in its correct
position in the sorted array.

LECTURE 1 95

HOW DOES QUICKSORT ALGORITHM WORK?

[QuickSort works on the principle of divide and conquer,
breaking down the problem into smaller sub-problems.

[There are mainly three steps in the algorithm:

1. Choose a Pivot: Select an element from the array as the
pivot. The choice of pivot can vary (e.g., first element, last
element, random element, or median).

2. Partition the Array: Rearrange the array around the pivot.
After partitioning, all elements smaller than the pivot will
be on its left, and all elements greater than the pivot will
be on its right. The pivot is then in its correct position, and
we obtain the index of the pivot.

LECTURE 1 96

HOW DOES QUICKSORT ALGORITHM WORK?

3. Recursively Call: Recursively apply the same
process to the two partitioned sub-arrays (left and
right of the pivot).

4.Base Case: The recursion stops when there is only
one element left in the sub-array, as a single
element is already sorted.

LECTURE 1 97

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

e A e —

O'I Pivot Selection: The last element arr[4] = 40 is chosen as the pivot.

step | INitial Pointers:i=-1andj=0.

l Pivot
arr[] = 10 80 30 90 40

Quick sort

LECTURE 1 98

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

GRAPHICAL ILLUSTRATION OF QUICK SORT

02 Since, arr[j] < pivot (10<40)

step. | INCrementito 0 and swap arr[i] with arr[j]. Incrementjby 1

J
" Pivot
arr[] — 10 80 30 90 40
1
[
| | Swap 10 with 10 Pivot

arr[] = 10 80 30 90 40

Quick sort

LECTURE 1 99

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

GRAPHICAL ILLUSTRATION OF QUICK SORT

03 Since, arr[j] > pivot (80<40)

step | NO swap needed. Increment j by 1

J
v Pivot
arr[] = 10 80 30 90 40

Quick sort

LECTURE 1 100

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

GRAPHICAL ILLUSTRATION OF QUICK SORT

- - - - e—= = ——_ =

0 4 Since, arr[j] < pivot (30<40)
Increment i by 1 and swap arr[i] with arr[j]. Incrementj by 1

Step
i J
v v Pivot
arr[]=] 10 80 30 90 40
1
Swap 80 with 30

Quick sort

LECTURE 1

101

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

GRAPHICAL ILLUSTRATION OF QUICK SORT

0 5 Since, arr(j] > pivot (90>40)

stop | NO SWap needed. Increment j by 1

v v Pivot
arr[]=| 10 30 80 90 40

Quick sort

LECTURE 1 102

GRAPHICAL ILLUSTRATION OF QUICK SORT

Partho Sarathi SArker

Asst Professor: Dept. Of CSE

Since traversal of j has ended. Now move pivot to its

step | cOrrect position, Swap arrf[i + 1] = arr[2] with arr[4] = 40.

v Pivot
arr[] = 10 30 80 90 40
i A
Swap 80 and 40
Partition Index(pi)=2 Pivot
arr[] = 10 30 40 90 80

LECTURE 1

Quick sort

103

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

SAMPLE QUESTION

dAdvantage and Disadvantage of Insertion
Sort and Quick Sort

JAnalyze Time Complexity of Quick Sort
JCompare all above Four Sort Technique.

LECTURE 1 104

WEEK 6
STACKS AND QUEUES
PUSH, POP OPERATION OF A STACK.

LECTURE 1 105

WHAT IS STACK

- A stack is an ordered list

- The last element inserted

« Hence it is called Last In

in which insertion and
deletion are done at one
end, called top.

is the first one to be
deleted.

First Out(LIFO) or First In
Last Out(FILO).

STACKADT

push (int data)
_| Main Stack
Operations

int pop()

Stack = — inttop()

— int size()

|| Auxiliary Stack

Operations

— int isEmpty()

— intisFull()

STACK OPERATIONS

push(int data) inserts data into stack

int pop() removes and returns last inserted
element

int top() returns last inserted element

int size() returns number of elements in stack

intisEmpty() indicate if any element is stored or not
int isFull() indicates if stack is full or not

STACK APPLICATIONS

- Balancing of Symbols

« Infix to Postfix conversion

- Evaluation of postfix expression
- Implementing function calls
- History of a web browser

- Undo Sequence

« Tree Traversal

WORKING

E'EEEE]'?EFEE'E“ | PUSH(10)
MAX =5 MAX =5
10
TOP =0 TOP = 1

WORKING

PUSH(20) | PUSH(30)
MAX =5 MAX =5
30
20 20
10 10
TOP =2 TOP = 3

WORKING

PUSH(40) | POP()
MAX =5 MAX =5
40
30 30
20 20
10 10
TOP = 4 TOP =3

WORKING

POP() | POP()
MAX = 5 MAX = 5
20
10 10
TOP =2 TOP = 1

WORKING

EMPTYSTACK()

MAX =5

TOP =0

| FULLSTACK()

MAX = 5

50

40

30

20

10
TOP = 4

IMPLEMENTATION BY ARRAY

+ Advantages
Best Performance
Disadvantages
Fixed Size
Basic Implementation
Initially Empty Array
Field to record where next data is placed
if array is full, push(item) else return false
if array is empty, pop() return item on top else NULL

IMPLEMENTATION BY ARRAY

- CREATING STRUCTURE
« struct ArrayStruct{
* int top; //Keep track of top Element
« int capacity; /Icapacity of the stack
* int *array, /Ipointer to address of first index
©)

- Space Complexity (for n operations)— O(n)

IMPLEMENTATION BY ARRAY

- isEmpty()} +isFull(}

- return (S->top == -1); - return(S->top==5->capacity-

-} 1);

« Time Complexity

. o) « Time Complexity

- O(1)

IMPLEMENTATION BY ARRAY

+ void push(struct Array *S,int

data){
< if(isFull(S))

+ cout<<*FULL";
« else

« S->array[++S->top]=data;

+ Time Complexity

- 0(1)

+ int pop(struct Array *S){

© if(isEmpty(S)H
© COUl<<"EMPTY",
« return;}

- else

« return (S->array[S->top]);

+ Time Complexity

- O(1)

USE OF STACK

EVALUATING POSTFIX = 123°+5-

STEF 1

SITEF 2

|—'*|I"-.':I Cad

| EIﬂI‘EEEIﬂ
n

Stack | Stack

ERFIFEESIID |
[l

USE OF STACK

EVALUATING POSTFIX = 123"+5-

STEF 3

STEP 4

| |

Stack |

| 273=6

| EIﬂI‘EEEIﬂ
n

=]

Stack

ERFIFEESIID |
[l

USE OF STACK

EVALUATING POSTFIX = 123°+5-

STEF &

STEP G

| 1+6=7

| EIﬂI‘EEEIﬂ
n

[~

Stack | Stack

ERFIFEESIID |
[l

USE OF STACK

EVALUATING POSTFIX = 123"+5-

STEF 7

STEFP 8

==

| EIﬂI‘EEEIﬂ
n

Stack | Stack

7-5=2 |

ERFIFEESIID |
[l

USE OF STACK

EVALUATING POSTFE = 123%+5-

| STEF 8

POSTFIX STRING

123%45-

| EI[.'.II'EEEIG
n RESULT

L]

Stack | -

REFERENCES

- Data Structures and Algorithms, Narsimha
Karumanchi

- https://www.geeksforgeeks.org/stack-data-structure/

- https://www.geeksforgeeks.org/tag/data-structures-
stack/

WEEK 8
STACKS AND QUEUES
ENQUEUE AND DEQUEUE OPERATION

LECTURE 1 125

Definition of Queue

An ordered collection of items from which items may be deleted from one end called the front and into which items
may be inserted from other end called rear is known as Queue,

It is a linear data structure.

Itis called First In First Out (FIFO) list. Since in queue, first element will be the first element out,

Deletion ———+ «—— |nsertion

Front Rear

(a) Insertion and deletion of elements in Queue

Queue (Example)

Queue with four elements A, B, Cand D.

A is at front and D is at rear.

A B C D

| |

Front Rear
(b) Queue

Element E will be added at the rear end.

A B C D 3

| I

Front Rear
(c) Front and near pointer after insertion

Element can be deleted only from the front.
Thus, A will be the first to be removed from the queue.

C

0

E

|

Front

|

Rear

Difference between Stack & Queue.

SR

Stack

Queue

Stack is a LIFO (Last in first out)
data structure,

Queue is a FIFO (first in first out)
data structure,

In a stack, all insertion and

deletions are permitted only at one

end of stack called top of stack.

In a queue items are inserted at
one end called the rear and
deleted from the other end called
the front.

Stack Is widely used in recursion,

Queue is more useful in many of
the real life applications,

Example: A stack of plates, a stack
of coin etc.

Example: A queue of people
waiting to purchase tickets, in a
computer system process waiting
for line printer etc.

Operations on a Queue.

l. Create: Creales emply queue,

1. Insert: Add new element at rear.

Y. Delete: Delete element at front,

4. Isempty: Checks queue 15 empty or not.

5. Isfull: Checks queue 15 full or not.

Algorithm to insert and delete element in the Queue.

. Create an empty queue by giving name and
. Imnally assign Rear = -1, front = -1,
. If choice == Insert then
if Rear == max-1 then
print “queue 15 full”
else
Rear = Rear +|
q [Rear] = elemen
4. If choice == Delete then
Il front == -] then
print “queue is empty”
else
front = front +|
. Stap

Ll e

T

. * {
Void enquauc (inf ») vold dequaie Radeith K1 |
(I‘lk |

{ (-
94 (nen= = m-1) 9"[‘[?1:1\4::-14411&:1::-0 (.

pm‘n” (v ovmwtfow")j '(Pnin (

“ Quew Jn evap b “),'
) v

A
=
|

void chu.m() Void J?Apla/()
4 ¢ |
94{"n:n"::—1441?<‘0tn==-l) fw])
< ol [Lrond = = = 4 FANCATEE

Pﬂin”(" Quewt A e'wply“); , (

/ pmnq(& waws (0 -
f‘)‘“‘(("now;- = T'H'an) 7

{ e\

?’\i?\“f{qxdu’ qu [“‘01\,])'

Queue as an abstract data type

(1) Initialize the queue to be empty.
(2) Check if the queue is empty or not.
(3) Check if the queue s full or not,
(4) Insert a new element in the queue if it is not full,
(5) Retrieve the value of first element of the queue, if the queue is not empty,
(6) Delete the first element from the queue if it is not empty,
Queue abstract data type = Queue elements + Queue operations,

Representation of an Queue as an Array

Front s -1
Deletion —= + Deletion
T T g 1 2 3 1
Front Rear
|b) Empty Queue
(a) Queue with array
J U lvix|y|z
0 1 2 3 &
FruntTJE HLr .lu £ @ 1 From=0 Rar = d
(¢) Queue after adding an element U (d) Queue after adding 5 element
viw|x|v|
0 14 2 3 4

Eadal o

" Hoar= &

Types of Queue

1. Linear Queue,
2. Circular Queue,
3. Double ended Queue,

4. Priority Queue,

Application of Queue

¢ Queue are used in computer for scheduling of resources to application . These
resources are CPU, Printer etc.,

¢ In batch Programming, multiple jobs are combined into a batch and the first program is
executed first, the second is executed next and so on in a sequential manners,

¢ Aqueue is used in break first scarch traversal of a graph & level wise traversal of tree.

* Computer simulation, Airport simulation.

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Week 9

Linked Lists Operation:

Create, traverse, search, insert, and delete
operations in linked lists

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TYPES

* Linked list consists of nodes where each node
contains a data field and a reference(link) to the
next node in the list.

* Linked list comprise of group or list of nodes in
which each node have link to next node to form a
chain

* Types of linked list
— Singly linked list
— Doubly linked list
— Circular linked list

W Partho Sarathi SArker
Asst Professor: Dept. Of CSE

" What are Linked Lists

* A linked list is a linear data
structure. s [l w [dpw [l |

* Nodes make up linked lists. T

* Nodes are structures made up
of data and a pointer to another
node.

¢ Usually the pointer is called
next.

140

—Arrays Vs tinked L

Partho Sarathi SArker =

epl."OfCSE

Lists—

Arrays

Linked list

Fixed size: Resizing is expensive

Dynamic size

Insertions and Deletions are inefficient:
Elements are usually shifted

Insertions and Deletions are efficient: No
shifting

Random access i.e., efficient indexing

No random access
=> Not suitable for operations requiring
accessing elements by index such as sorting

No memory waste if the array is full or almost
full; otherwise may result in much memory
waste,

Since memory is allocated dynamically(acc. to
our need) there is no waste of memory.

Sequential access is faster [Reason: Elements in
contiguous memory locations]

Sequential access is slow [Reason: Elements not
in contiguous memory locations]

141

Partho Sarathi SArker
Asst Professor; Dept. Of CSE

R ———
R — -

/—-—_—

Singly Linked List

* Each node has only one link part

* Each link part contains the address of the next node in
the list

* Link part of the last node contains NULL value which
signifies the end of the node

142

* Here is a singly-linked list (SLL):

myList \

* Each node contains a value(data) and a pointer
to the next node in the list

* myList is the header pointer which points at
the first node in the list

143

Basic Operations on a list

* Creating a List

* Inserting an element in a list

* Deleting an element from a list
 Searching a list

* Reversing a list

144

reating a node

struct node{

int data; // A simple node of a linked list
node*next;
}start; //start points at the first node

start=NULL ; initialised to NULL at beginning

145

————————

node* create(int num) //say num=1 is passed from main
{
node*ptr;
ptr= new node; //memory allocated dynamically
if(ptr==NULL)
‘OVERFLOW’ // no memory available
exit(1);
else
{
ptr->data=num;
ptr->next=NULL;
return ptr,

}

146

void main()

node* ptr;

int data;
cin>>data;
ptr=create(data);

147

arathi Sarke
L)

: 2 =

nserting the node i
There are 3 cases here:-

~Insertion at the beginning
~Insertion at the end
~Insertion after a particular node

148

e ———
nsertion at the beginning
There are two steps to be followed:-

a) Make the next pointer of the node point towards the
first node of the list

b) Make the start pointer point towards this new node

= [f the list is empty simply make the start pointer
point towards the new node;

149

newNode

150

void sert_beg(node* p)

{
node* temp;
if(start==NULL) //if the list is empty
{
start=p;
cout<<"\nNode inserted successfully at the
beginning”;
J
else {
temp=start;
start=p;

p->next=temp; //making new node point at
} the first node of the list

151

Inserting at the end

Here we simply need to make the next pointer
of the last node point to the new node

Fo rmerly nul

e —[=] —H‘%H»r

prev

152

void insert_end(node* p)

{

node *q=start;
if(start==NULL)
{

start=p;

J

else{
while(g->link!=NULL)
q=q->link;
q->next=p;

J

153

Partho Sarathi Sarker
mbept."C

—— ——

—

~Inserting after an element

.

Here we again need to do 2 steps :-

= Make the next pointer of the node to be inserted
point to the next node of the node after which you
want to insert the node

= Make the next pointer of the node after which the
node is to be inserted, point to the node to be
inserted

154

155

void insert_after(int ¢c,node* p)
{
node* q;
=start;
for(int i=1;i<c;i++)
{
q=q->link;
if(q==NULL)

cout<<’Less than “<<c<<” nodes in the list

)
p->link=g->link;
q->link=p;
cout<<"\nNode inserted successfully”;

J

156

WEEK 10
LINKED LISTS OPERATION:
CREATE, TRAVERSE, SEARCH, INSERT,
AND DELETE OPERATIONS IN LINKED
LISTS

LECTURE 1 157

~ Deleting a node in SLL
Here also we have three cases:-
» Deleting the first node

»Deleting the last node

»Deleting the intermediate node

= --.1\‘:

158

artho.Sari Sarker
Dept. Of C

Jeleting the first node

Here we apply 2 steps:-

= Making the start pointer point towards the 2"
node

= Deleting the first node using delete keyword

start

one | @ » two | @ T—> three | ©®

159

void del_first()
{

if(start==NULL)
cout<<"\nError......List is empty\n”;
else
{
node* temp=start;
start=temp->link;
delete temp;
cout<<"\nFirst node deleted successfully....!!!”;

}
}

160

~ Deleting the Iz

—=

Here we apply 2 steps:-

= Making the second last node’s next pointer point
to NULL

= Deleting the last node via delete keyword

start

ket

nodel

-node2

/ —>
N

161

if(start==NULL)
cout<<"\nError....List is empty”;
else

{

node* g=start;
while(g->link->link!=NULL)
q=q->link;

node* temp=q->link;

q->link=NULL;

delete temp;

cout<<"\nDeleted successfully...”;

162

_Partho Sarathi Sarker

. “\

By —— i

Deleting a particular nod

Here we make the next pointer of the node previous to
the node being deleted ,point to the successor node of
the node to be deleted and then delete the node using
delete keyword

" nodel node2 -——v node3
To be deleted

163

—void l(int c)
{
node* g=start;
for(int i=2;i<c;i++)

{

q=q->link;
cout<<"\nNode not found\n”;
}
if(i==c)

{
node* p=q->link; //mode to be deleted

q->link=p->link; //disconnecting the node p
delete p;
cout<<“Deleted Successfully”;

}
}

164

searching a SLL

e Searching involves finding the required element in the
list

¢ We can use various techniques of searching like linear

search or binary search where binary search is more
efficient in case of Arrays

e But in case of linked list since random access is not
available it would become complex to do binary search
in it

® We can perform simple linear search traversal

165

the node matches with the required value

void search(int x)

{

node*temp=start;
while(temp!=NULL)
{
if(temp->data==x)

{

cout<<"FOUND "<<temp->data;
break;

}

temp=temp->next;

}

166

PSS —

=
4P
C =
—

ersing a linked list

a 0 Sarathi Sarker

* We can reverse a linked list by reversing the
direction of the links between 2 nodes

A 5--| B |ef» C |efs D [ef» NULL
Input
D (et C |1 B |t A |et> NULL

Output

167

artho Sarathi Sarker
)t _SE

* We make use of 3 structure pointers say p,q,r

e At any instant q will point to the node next topand r
will point to the node next to q

Head —— P ﬁ q > NULL
NULL f

* For next iteration p=q and g=r

* At the end we will change head to the last node

168

void reverse()
{
node*p,*q,’r;
if(start==NULL)
{
cout<<"\nList is empty\n";
return;
}
p=start;
q=p->link;
p->link=NULL;
while(q!=NULL)
{
r=q->link;
q->link=p;
P=q;
q=r;
}
start=p;
cout<<"\nReversed successfully”;

}

169

N ARRAYS AND SLL

| artho Sarathl Sarker

Operation ID-Array Complexity Singly-linked list Complexity
Insert at beginning O(n) O(1)
Insert at end O(l) O(1) if the list has tail reference
O(n) if the list has no tail reference
Insert at middle O(n) O(n)
Delete at beginning | O(n) O(1)
Delete at end O(1) O(n)
Delete at middle O(n): O(n):
O(1) access followed by O(n) O(n) search, followed by O(1) delete
shift
Search O(n) linear search O(n)
O(log n) Binary search
Indexing: What is O(l) O(n)

the element at a
given position k?

170

1. Doubly linked list is a linked data structure that consists of a set of
sequentially linked records called nodes.

2 ; Each node contains three fields ::
-: one is data part which contain data only.
-:two other field is links part thatare point
or references to the previous or to the next
node in the sequence of nodes.

3. The beginning and ending nodes’ previous and next
links, respectively, point to some kind of terminator,
typically a sentinel node or null to facilitate traversal
of the list.

171

WEEK 11
LINKED LISTS OPERATION:
CREATE, TRAVERSE, SEARCH, INSERT,
AND DELETE OPERATIONS IN LINKED
LISTS

LECTURE 1 172

~ . Partho Sarathi Sarker =
Asst Professor: Dept. Of CSE
— NODE =

A B
NULL | n 400 B

A doubly linked list contain three fields: an integer value, the
link to the next node, and the link to the previous node.

173

~l 1
s ?1 _

e

COmpSre 0 S e

e Advantages: * Disadvantages:

e Can be traversed in either * Requires more space
direction (may be e List manipulations are
essential for some slower (because more
programs) links must be changed)

e Some operations, such as e Greater chance of having
deletion and inserting bugs (because more links
before a node, become must be manipulated)

easier

174

struct node
{
int data;
node*next;
node*previous; //holds the address of previous node

b

p revious Data next

—

175

" W Partho Sarathi Sarker e
Asst Professor: Dept. Of CSE

“Inserting at beginning

element 4/ obj |

v
head N
I : gl e

element_ I 7 obj |

176

void nsert_beg(node *P)

{
if(start==NULL)
{
start=p;
cout<<"\nNode inserted successfully at the beginning\m";

J

else

{

node* temp=start;

start=p;

temp->previous=p; //making 1* node’s previous point to the
new node

p->next=temp; //making next of the new node point to the
1st node

cout<<"\nNode inserted successfully at the beginning\n";

J

177

178

void insert_end(node* p)

{
if(start==NULL)

{
start=p;
cout<<"\nNode inserted successfully at the end";

)

else
{
node* temp=start;
while(temp->next!=NULL)
{
temp=temp->next;
}
temp->next=p;
p->previous=temp;
cout<<"\nNode inserted successfully at the end\n";
J
}

179

obj | \

— e le—- -
e le—1 le——1 >

Making next and previous pointer of the node to be
inserted point accordingly

775\

o/

Adjusting the next and previous pointers of the nodes b/w which
the new node accordingly

180

void insert_after(int ¢c,node* p)

{

temp=start;

for(int i=1;i<c-1;i4+)

{

temp=temp->next;

}

p->next=temp->next;
temp->next->previous=p;
temp->next=p;
p->previous=temp;
cout<<"\nInserted successfully";

181

~~Deleting a node

Partho Sarathi Sarker
Dept. Of C

* Node deletion from a DLL involves changing two links
+ In this example,we will delete node b

myDLL

R

&

T

«—le|b

@

b

* We don't have to do anything about the links in node b

* Garbage collection will take care of deleted nodes

* Deletion of the first node or the last node is a special

case

182

node*s=start;

{
for(int i=1;i<c-1;i++)
{

=s->next;
J
node” p=s->next;
s->next=p->next;
p->next->previous=s;
delete p;
cout<<"\nNode number "<<c<<" deleted successfully";

}

183

CIRCULAR LINKED LISTS

dLast node references the first node
dEvery node has a successor

No node in a circular linked list contains
NULL

>

I
!
I
'
T
!

list

A circular linked list

184

CIRCULAR DOUBLY LINKED LISTS

d Circular doubly linked list

<+ prev pointer of the dummy head node points to the
last node

<+ next reference of the last node points to the dummy
head node

< No special cases for insertions and deletions

185

CIRCULAR DOUBLY LINKED LISTS

(@) listHead

'y
L

]

-
[& o
-«

<] Able [eeeof®

Ay

o| Baker |« e«

Ay

T<l.| Jones |+« =

Ay

Tele| Smith | s« « «

.
.__/

Tl |Wilson] « « « «

Ay

LDummy head node

(b) listHead

[

I

!

L)

(b) An empty list with a dummy head node

(a) A circular doubly linked list with a dummy head node

186

Partho Sarathi Sarker

“APPLICATIONS OF LINKED LIST

1. Applications that have an MRU list (a linked list of file
names)

2. The cache in your browser that allows you to hit the BACK
button (a linked list of URLs)

3. Undo functionality in Photoshop or Word (a linked list of
state)

4. A stack, hash table, and binary tree can be implemented
using a doubly linked list.

187

~__Polynomial RFpTE'sentatiOﬁ/

* Linked list Implementation:

* p1(x) = 23%x9 + 18X7 + 41x° + 163x4 + 3
* p2(x) = 4x® + 10x4 + 12x + 8

P1 = q A 41| 6 18 | 7 3| 0
—— TAIL (contains pointer) =
PZ 4 6 o | 4 | 4))
I | +
N

NODE (contains coefficient & exponent)
188

Partho Sarathi Sarker e

Asst Professor: Dept. Of CSE /#ﬁa-’/
——— = o

————

- —/ -

» Advantages of using a Linked list:

» save space (don’t have to worry about sparse
polynomials) and easy to maintain

* don't need to allocate list size and can
declare nodes (terms) only as needed

* Disadvantages of using a Linked list :
» can't go backwards through the list
* can't jump to the beginning of the list from
the end.

189

WEEK 12
TREES: TYPE, PROPERTIES
UNDERSTAND AND IMPLEMENT TREE
STRUCTURES AND THEIR TRAVERSAL

LECTURE 1 190

TREE DATA STRUCTURE

 Tree data structure is a hierarchical structure that
Is used to represent and organize data in a way
that is easy to navigate and search. It is a collection
of nodes that are connected by edges and has a
hierarchical relationship between the nodes.

 The topmost node of the tree is called the root,
and the nodes below it are called the child nodes.
Each node can have multiple child nodes, and
these child nodes can also have their own child
nodes, forming a recursive structure.

191

WHY TREE IS CONSIDERED A NON-LINEAR
DATA STRUCTURE?

[The data in a tree are not stored in a sequential
manner i.e., they are not stored linearly. Instead,
they are arranged on multiple levels or we can say
It is a hierarchical structure.

192

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Level O

Level 1

Level 2

Level 3

Leaf Nodes

Subtree

193

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

* Parent Node: The node which is an immediate
predecessor of a node is called the parent node of
that node. {B} is the parent node of {D, E}.

 Child Node: The node which is the immediate
successor of a node is called the child node of that
node. Examples: {D, E} are the child nodes of {B}.

194

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

* Root Node: The topmost node of a tree or the
node which does not have any parent node is
called the root node. {A} is the root node of the
tree. A non-empty tree must contain exactly one
root node and exactly one path from the root to all
other nodes of the tree.

- Leaf Node or External Node: The nodes which do
not have any child nodes are called leaf nodes. {l,
J, K, F, G, H} are the leaf nodes of the tree.

195

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

* Ancestor of a Node: Any predecessor nodes on
the path of the root to that node are called
Ancestors of that node. {A,B} are the ancestor
nodes of the node {E}

* Descendant: A node x is a descendant of another
node y if and only if y is an ancestor of x.

* Sibling: Children of the same parent node are
called siblings. {D,E} are called siblings.

196

BASIC TERMINOLOGIES IN TREE DATA
STRUCTURE

Level of a node: The count of edges on the path
from the root node to that node. The root node has
level O.

Internal node: A node with at least one child is
called Internal Node.

Neighbour of a Node: Parent or child nodes of that
node are called neighbors of that node.

Subtree: Any node of the tree along with its
descendant. A3

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

BASIC TERMINOLOGIES IN TREE DATA

STRUCTURE

198

TYPES OF TREE DATA STRUCTURES:

* Binary tree: In a binary tree, each node can have a
maximum of two children linked to it. Some
common types of binary trees include full binary
trees, complete binary trees, balanced binary trees,
and degenerate or pathological binary trees.
Examples of Binary Tree are Binary Search Tree
and Binary Heap.

199

https://www.geeksforgeeks.org/types-of-trees-in-data-structures

 Ternary Tree: A Ternary Tree is a tree data
structure in which each node has at most three
child nodes, usually distinguished as “left”, “mid”
and “right”.

* N-ary Tree or Generic Tree: Generic trees are a
collection of nodes where each node is a data
structure that consists of records and a list of
references to its children(duplicate references are
not allowed). Unlike the linked list, each node
stores the address of multiple nodes.

200

https://www.geeksforgeeks.org/ternary-tree
https://www.geeksforgeeks.org/generic-treesn-array-trees

[Binary Search Tree is a data structure used in
computer science for organizing and storing data in
a sorted manner. Binary search tree follows all
properties of binary tree and for every nodes,
Its left subtree contains values less than the node
and the right subtree contains values greater than
the node. This hierarchical structure allows for
efficient Searching, Insertion,
and Deletion operations on the data stored in the
tree.

201

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

BINARY SEARCH TREE

12 <16 \

13<16 16 <20

i /
N\
N 7
-

Left subtree contains Right subtree contains all
all elements less than 8 elements greater than 8

202

PROPERTIES OF TREE DATA STRUCTURE:

 Number of edges: An edge can be defined as the
connection between two nodes. If a tree has N
nodes then it will have (N-1) edges. There is only
one path from each node to any other node of the
tree.

* Depth of a node: The depth of a node is defined as
the length of the path from the root to that node.
Each edge adds 1 unit of length to the path. So, it
can also be defined as the number of edges in the
path from the root of the tree to the node.

203

PROPERTIES OF TREE DATA STRUCTURE:

* Height of a node: The height of a node can be
defined as the length of the longest path from the
node to a leaf node of the tree.

* Height of the Tree: The height of a tree is the
length of the longest path from the root of the tree
to a leaf node of the tree.

204

PROPERTIES OF TREE DATA STRUCTURE:

d Degree of a Node: The total count of subtrees
attached to that node is called the degree of the
node. The degree of a leaf node must be 0. The
degree of a tree is the maximum degree of a node
among all the nodes in the tree.

205

WEEK 13
PRE-ORDER, IN-ORDER, POST-ORDER
REPRESENTATION
IMPLEMENT TREE TRAVERSAL
TECHNIQUES

LECTURE 1 206

TREE TRAVERSAL TECHNIQUES

dTree Traversal refers to the process of visiting or
accessing each node of the tree exactly once in a
certain order. Tree traversal algorithms help us to
visit and process all the nodes of the tree. Since
tree is not a linear data structure, there are
multiple nodes which we can visit after visiting a
certain node. There are multiple tree traversal
techniques which decide the order in which the
nodes of the tree are to be visited.

207

Tree Traversal Techniques

Depth First Traversal Breadth First Traversal
(DFS) (Level Order Traversal or BFS)
Preorder Inorder Postorder
Traversal Traversal Traversal

208

INORDER TRAVERSAL

L Inorder traversal visits the node in the order: Left -
> Root -> Right

S
Inorder Traversal of Binary Tree

Initial traversal from
root to left most node

Inorder Traversal: 4 > 2 > 5—> 1—> 3 > 06

209

ALGORITHM FOR INORDER TRAVERSAL:

 /norder(tree)

Traverse the left subtree, i.e., call Inorder(left->subtree)
Visit the root.

Traverse the right subtree, i.e., call Inorder(right->subtree)

210

PREORDER TRAVERSAL

L Preorder traversal visits the node in the
order: Root -> Left -> Right

oS
Preorder Traversal of Binary Tree

Preorder Traversal: 1 > 2 >4 > 5 —> 3 > 6

POSTORDER TRAVERSAL

1 Postorder traversal visits the node in the
order: Left -> Right -> Root

oS
Postorder Traversal of Binary Tree

Initial traversal from
root to left most node

Postorder Traversal: 4 > 5—> 2 > 6 > 3 > 1

WEEK 14
GRAPHS: REPRESENTATION AND
ALGORITHMS
UNDERSTAND AND IMPLEMENT GRAPH
REPRESENTATIONS AND ALGORITHMS

213

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

A graph data structure is a collection of nodes that have

data and are connected to other nodes.

J More precisely, a graph is a data structure (V, E) that
consists of

A collection of vertices V

* A collection of edges E, represented as ordered pairs of
vertices (u,v)

214

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

av = {0, 1, 2, 3}
4dE = {(0,1), (0,2), (0,3), (1,2)}
QG = {V, E}

215

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

GRAPH TERMINOLOGY

* Adjacency: A vertex is said to be adjacent to another
vertex if there is an edge connecting them. Vertices 2
and 3 are not adjacent because there is no edge
between them.

 Path: A sequence of edges that allows you to go from
vertex A to vertex B is called a path. 0-1, 1-2 and 0-2 are
paths from vertex O to vertex 2.

* Directed Graph: A Eraph in which an edge (u,v) doesn't
necessarily mean that there is an edge (v, u) as well. The

edges in such a graph are represented by arrows to
show the direction of the edge.

216

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

GRAPH REPRESENTATION

d Adjacency Matrix

d An adjacency matrix is a 2D array of V x V
vertices. Each row and column represent a
vertex.

QIf the value of any element a[i][j] is 1, it
represents that there is an edge connecting
vertex i and vertex j.

217

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

dThe adjacency matrix for the graph we created
above is...

1 1 0] 1 0
2 1 1 O
3 1 (0] O

d Since it is an undirected graph, for edge (0,2), we also
need to mark edge (2,0); making the adjacency matrix
symmetric about the diagonal.

218

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

J Adjacency List

Dié\n adjacency list represents a graph as an array of linked
ists.

JThe index of the array represents a vertex and each
element in its linked list represents the other vertices
that form an edge with the vertex.

219

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

d The adjacency list for the graph we made in the first
example is as follows: T EE ‘'ER K

1 Bl 0 R 2
2 P10 el 1

3= 0

d An adjacency list is efficient in terms of storage because

we only need to store the values for the edges. For a

graph with millions of vertices, this can mean a lot of
saved space.

220

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

TYPES OF GRAPH DATA STRUCTURE

O Finite Graph O Regular Graph

4 Infinite Graph O Bipartite Graph

d Trivial Graph d Labelled Graph

O Simple Graph d Digraph Graph

O Multi Graph d Subgraph

d Null Graph [Connected or

Q Complete Graph Disconnected Graph
Q Pseudo Graph A Cyclic Graph

[Vertex Labeled Graph

Q ref: https://www.educba.com/types-of- [Directed Acyclic Graph
graph-in-data-structure/

LECTURE 1 221

WEEK 15
BREADTH FIRST SEARCH ALGORITHM(BFS),
APPLICATION

LECTURE 1 222

BREADTH FIRST SEARCH

 Breadth First Search (BFS) is a
fundamental graph traversal algorithm. It begins
with a node, then first traverses all its adjacent.
Once all adjacent are visited, then their adjacent
are traversed.

LECTURE 1 223

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Ol Initially queue and visited array are empty.

Step

Visited:

Queue:
@ .
Front

BFS on Graph

LECTURE 1 224

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

02 Push 0 into queue and mark it visited.

Step

Visited: | 0

Queue:

BFS on Graph

225

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Remove 0 from the front of queue and visit the unvisited
step | N€Ighbours and push them into queue.

®
Queue: 0 | 1 | 2
®
Front

BFS on Graph

Visited:| 0 | 1 | 2

226

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

0 4 Remove node 1 from the front of queue and visit the
step | UNVisited neighbours and push them into queue.

®
O

BFS on Granh

Visited:

Queue:

0112] 3
a2 | 3
Front

D2

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Remove node 2 from the front of queue and visit the
step | UNVisited neighbours and push them into queue.

Visited:| 0 | 1 | 2| 3 | 4
Queue: 2 | 3 | 4

o .

BFS on Graph

228

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

06 Remove node 3 from the front of queue and visit the
s unvisited neighbours and push them into queue.

@Visited: 0l112 1] 3| 4

Queue: 3 | 4

f

/ Front
@ All neighbors of node 3 have been visited,
proceed to the next node in the queue.

BFS on Graph

229

07

Step

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

Remove node 4 from the front of queue and visit
the unvisited neighbours and push them into queue.

@Visited: 0(l112 1|34

Queue: 4
f

/ Front
@ All neighbors of node 4 have been visited,
proceed to the next node in the queue.

BFS on Graph

230

APPLICATIONS OF BFS IN GRAPHS

» Shortest Path Finding: BFS can be
the shortest path between two nooc
unweighted graph. By keeping trac
of each node during the traversal, t
path can be reconstructed.

in a graph. If a node is visited twice

used to find
es In an
k of the parent

ne shortest

Cycle Detection: BFS can be used to detect cycles

during the

traversal, it indicates the presence of a cycle.

231

APPLICATIONS OF BFS IN GRAPHS

* Connected Components: BFS can be used to
identify connected components in a graph. Each
connected component is a set of nodes that can be
reached from each other.

« Topological Sorting: BFS can be used to perform
topological sorting on a directed acyclic graph
(DAG). Topological sorting arranges the nodes in a
linear order such that for any edge (u, v), u appears
before v in the order.

232

APPLICATIONS OF BFS IN GRAPHS

* Level Order Traversal of Binary Trees: BFS can
be used to perform a level order traversal of a
binary tree. This traversal visits all nodes at the
same level before moving to the next level.

« Network Routing: BFS can be used to find the
shortest path between two nodes in a network,
making it useful for routing data packets in
network protocols.

233

WEEK 16
DEPTH FIRST SEARCH ALGORITHM(DFS),
APPLICATION

234

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM

J A standard DFS implementation puts each vertex of the
graph into one of two categories:

1. Visited
2. Not Visited

d The purpose of the algorithm is to mark each vertex as
visited while avoiding cycles.

235

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM

J The DFS algorithm works as follows:

1. Start by putting any one of the graph's vertices on top of
a stack.

2. IT.ake the top item of the stack and add it to the visited
IST.

3. Create a list of that vertex's adjacent nodes. Add the
one?(whlch aren't in the visited list to the top of the
stack.

4. Keep repeating steps 2 and 3 until the stack is empty.

236

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

0 Visited

3 2 1 Stack

237

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

0 1 Visited

3 2 Stack

238

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

0 1 2 Visited

3 4 Stack

239

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

0 1 2 4 Visited

3 Stack

240

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

DEPTH FIRST SEARCH ALGORITHM PROCEDURE

0 1 2 4 3 Visited

Stack

241

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

APPLICATION OF DFS ALGORITHM

1. For finding the path
2. To test if the graph is bipartite

3. For fihnding the strongly connected components of a
grap

4. For detecting cycles in a graph

242

Partho Sarathi SArker
Asst Professor: Dept. Of CSE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7: Week 1
	Slide 8: DaTA Structue
	Slide 9: DaTA Structue
	Slide 10: Data Structure
	Slide 11
	Slide 12: Data Structure [contd.]
	Slide 13: Type Of Data Structure
	Slide 14: A Simple Question ?
	Slide 15: WEEk 2 Operation on Data Structure, Time-Space Complexity, Algorithm, Array definition
	Slide 16: Operations on Data Structure
	Slide 17: Algorithm
	Slide 18: ALGORITHM
	Slide 19: Program
	Slide 20: Program
	Slide 21: Complexity of algorithm
	Slide 22: Time complexity
	Slide 23: Space complexity
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28: Week 3 Arrays:Initialization, access, Types of Array, Array Addressing: Row major, Column Major
	Slide 29
	Slide 30
	Slide 31
	Slide 32: One Dimensional Array [contd.]
	Slide 33: One Dimensional Array [contd.]
	Slide 34: One Dimensional Array [contd.]
	Slide 35: Storing data to the array
	Slide 36: One Dimensional Array [contd.]
	Slide 37: Pointer and Dynamic Array
	Slide 38: Dynamic array
	Slide 39: Dynamic Array
	Slide 40: Dynamic Array
	Slide 41: To find out largest element
	Slide 42: To find out largest element
	Slide 43: Find out the summations of even and odd numbers
	Slide 44: Summation Of Numbers in Odd and even indices separately
	Slide 45: Types of Array
	Slide 46: Definition of two dimensional array
	Slide 47: Symbolic representation of Two Dimensional Array
	Slide 48: Two Dimensional Array
	Slide 49: Expression of Two dimensional array
	Slide 50: Expression [Cont…]
	Slide 51: To store and retrieve values in and from array
	Slide 52: ii) Direct insertion of data in two dimensional array
	Slide 53: Two dimensional array representation in memory
	Slide 54: Array representation in memory
	Slide 55: Location of an element(Array Addressing)
	Slide 56: Location of an element
	Slide 57: Location of an element
	Slide 58: Two dimensional array
	Slide 59: The Summation Of The Diagonal Elements
	Slide 60: Algorithm to find out summation of diagonal elements
	Slide 61: Programming consideration
	Slide 62: Sample questions of this chapter
	Slide 63: Sample questions …..
	Slide 64:
	Slide 65: Week 4 Sorting and Searching Algorithms: Linear Search, Binary Search
	Slide 66: Linear search
	Slide 67: Linear Search
	Slide 68: Linear Search procedure
	Slide 69: Linear Search Algorithm
	Slide 70: Binary Search
	Slide 71: Binary Search procedure
	Slide 72: Binary Search procedure
	Slide 73: Binary Search graphical representation
	Slide 74: Binary Search graphical representation
	Slide 75: Thank you
	Slide 76: Week 5 Selection Sort, Bubble Sort
	Slide 77: Selection Sort
	Slide 78: Selection Sort Procedure
	Slide 79: Selection Sort Algorithm
	Slide 80: Selection Sort Example
	Slide 81: Complexity of Selection Sort
	Slide 82: Bubble Sort
	Slide 83: Bubble Sort
	Slide 84: Bubble Sort
	Slide 85: Bubble sort Algorithm
	Slide 86: Sample Question
	Slide 87: Thank you
	Slide 88: Week 6 Insertion Sort, Quick Sort
	Slide 89: Insertion Sort
	Slide 90: Insertion Sort Procedure
	Slide 91: Insertion Sort Procedure
	Slide 92: Insertion Sort algorithm
	Slide 93: Insertion Sort algorithm
	Slide 94: Insertion Sort algorithm
	Slide 95: Quick sort
	Slide 96: How does QuickSort Algorithm work?
	Slide 97: How does QuickSort Algorithm work?
	Slide 98: Graphical Illustration of quick sort
	Slide 99: Graphical Illustration of quick sort
	Slide 100: Graphical Illustration of quick sort
	Slide 101: Graphical Illustration of quick sort
	Slide 102: Graphical Illustration of quick sort
	Slide 103: Graphical Illustration of quick sort
	Slide 104: Sample question
	Slide 105: Week 6 Stacks and Queues Push, Pop Operation of a Stack.
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125: Week 8 Stacks and Queues Enqueue and Dequeue operation
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137: Thank you
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143
	Slide 144
	Slide 145
	Slide 146
	Slide 147
	Slide 148
	Slide 149
	Slide 150
	Slide 151
	Slide 152
	Slide 153
	Slide 154
	Slide 155
	Slide 156
	Slide 157: Week 10 Linked Lists Operation: Create, traverse, search, insert, and delete operations in linked lists
	Slide 158
	Slide 159
	Slide 160
	Slide 161
	Slide 162
	Slide 163
	Slide 164
	Slide 165
	Slide 166
	Slide 167
	Slide 168
	Slide 169
	Slide 170
	Slide 171
	Slide 172: Week 11 Linked Lists Operation: Create, traverse, search, insert, and delete operations in linked lists
	Slide 173
	Slide 174
	Slide 175
	Slide 176
	Slide 177
	Slide 178
	Slide 179
	Slide 180
	Slide 181
	Slide 182
	Slide 183
	Slide 184: Circular Linked Lists
	Slide 185: Circular Doubly Linked Lists
	Slide 186: Circular Doubly Linked Lists
	Slide 187
	Slide 188
	Slide 189
	Slide 190: Week 12 Trees: type, properties Understand and implement tree structures and their traversal
	Slide 191: Tree data structure
	Slide 192: Why Tree is considered a non-linear data structure?
	Slide 193
	Slide 194: Basic Terminologies In Tree Data Structure
	Slide 195: Basic Terminologies In Tree Data Structure
	Slide 196: Basic Terminologies In Tree Data Structure
	Slide 197: Basic Terminologies In Tree Data Structure
	Slide 198: Basic Terminologies In Tree Data Structure
	Slide 199: Types of Tree data structures:
	Slide 200
	Slide 201
	Slide 202: Binary Search Tree
	Slide 203: Properties of Tree Data Structure:
	Slide 204: Properties of Tree Data Structure:
	Slide 205: Properties of Tree Data Structure:
	Slide 206: Week 13 Pre-order, in-order, post-order Representation Implement tree traversal techniques
	Slide 207: Tree Traversal techniques
	Slide 208
	Slide 209: Inorder traversal
	Slide 210: Algorithm for Inorder Traversal:
	Slide 211: Preorder traversal
	Slide 212: Postorder traversal
	Slide 213: Week 14 Graphs: Representation and Algorithms Understand and implement graph representations and algorithms
	Slide 214
	Slide 215
	Slide 216: Graph Terminology
	Slide 217: Graph Representation
	Slide 218
	Slide 219
	Slide 220
	Slide 221: Types of Graph Data Structure
	Slide 222: WEEK 15 Breadth First Search Algorithm(bFS), Application
	Slide 223: Breadth First Search
	Slide 224
	Slide 225
	Slide 226
	Slide 227
	Slide 228
	Slide 229
	Slide 230
	Slide 231: Applications of BFS in Graphs
	Slide 232: Applications of BFS in Graphs
	Slide 233: Applications of BFS in Graphs
	Slide 234: Week 16 Depth First Search Algorithm(DFS), Application
	Slide 235: Depth First Search Algorithm
	Slide 236: Depth First Search Algorithm
	Slide 237: Depth First Search Algorithm procedure
	Slide 238: Depth First Search Algorithm procedure
	Slide 239: Depth First Search Algorithm procedure
	Slide 240: Depth First Search Algorithm procedure
	Slide 241: Depth First Search Algorithm procedure
	Slide 242: Application of DFS Algorithm
	Slide 243: Thank you

