
CSE0613-2201 System Analysis & Design

Partho Sarathi Sarker

Asst. Professor

Dept. of Computer Science and Engineering(CSE)

University of Global Village (UGV)

Systems Analysis and Design

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Analysis & Design
Course Code: CSE 0613-2201 Credits: 02

CIE Marks: 60

Exam Hours: 02 SEE Marks: 40

Course Learning Outcome (CLOs): After Completing this course successfully, the student will
be able to…

CLO1 Understand fundamental principles and methodologies of system analysis and design.

CLO2 Apply system analysis techniques to gather requirements and develop models.

CLO3 Design system architecture, interfaces, and data structures using appropriate tools and strategies.

CLO4 Evaluate and implement system development methodologies, scalability, performance, and security

mechanisms.

CLO5 Develop, test, and deploy system designs through practical projects and real-world applications.

1/16/2025 2

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Summary of Course Content

Sl.

No.

COURSE CONTENT HRs CLOs

1 System Design & Analysis: SDLC stages, system development methodologies 2 CLO1 &

CLO2

2 System Elements & Types: Elements, types of systems, and system categories 2 CLO1

3 Information Systems & Role of Analyst and Planning: MIS, DSS, TPS, and role of

system analyst & analysis strategies

2 CLO1, CLO2

& CLO3

4 Structured Analysis & Models: DFDs, ER diagrams & data dictionaries 2 CLO4

5 Implementation & Testing: System coding, unit testing, system integration 2 CLO5

1. “Systems Analysis and Design” by Elias M Awad

2. "Object-Oriented Systems Analysis and Design Using UML" by Simon

Bennett, Steve McRobb and Ray Farmer, 2nd Edition

3. "Systems Analysis and Design" by Kenneth E. Kendall and Julie E. Kendall,

10th Edition

1/16/2025 3

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Assessment Pattern
Bloom's
Category
Marks (out of
90)

Tests
(30)

Assignments
(10)

Quizzes
(10)

Attendanc
e

(10)

Remember 04 03

Understand 05 02 04

Apply 06 03 03

Analyze 05

Evaluate 05 02 03

Create 05

SEE- Semester End Examination (40 Marks)

Bloom's Category Test

Remember 05

Understand 05

Apply 13

Analyze 07

Evaluate 05

Create 05

1/16/2025 4

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Course Plan

5

Week Topics Teaching Strategy Assessment Strategy
Mapped

CLO(s)

1 Introduction to Systems Lecture, multimedia, discussions Feedback, Q&A, assessment CLO1

2
System Elements and

Categories

Lecture, discussions Q&A, Midterm assessments
CLO1

3
Introduction to Systems

Analysis

Lecture, multimedia Midterm assessments
CLO1, CLO2

4
Techniques in Systems

Analysis

Lecture, discussions Midterm assessments
CLO2

5 System Design Principles Lecture, discussions Feedback, Q&A, assessment CLO1, CLO3

6 System Design Tools Lecture, multimedia, discussions Q&A, assignments CLO3

7 SDLC Overview Lecture, multimedia, discussions Ethical analysis, Final assessments CLO1, CLO2

8 SDLC - System Design
Interactive lectures, examples from

real-world applications

Final term assessments
CLO3

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Course Plan
Week Topics Teaching Strategy Assessment Strategy Mapped CLO(s)

9 Implementation Strategies Lecture, multimedia, discussions Final term assessments CLO4

10 Testing in Systems Design
Revision through Q&A, group

activities

Participation, group

evaluation
CLO4

11 Scalability and Performance Lecture, multimedia, discussions Feedback, Q&A, assessment CLO4

12 Security in System Design Lecture, discussions Q&A, Midterm assessments CLO4

13 Advanced Analysis Techniques Lecture, multimedia Midterm assessments CLO2, CLO4

14 Challenges in System Design Lecture, discussions Midterm assessments CLO4

15 Roles and Responsibilities Lecture, discussions Feedback, Q&A, assessment CLO1, CLO2

16 Real-World Applications Lecture, multimedia, discussions Q&A, assignments CLO5

17 Capstone Project and Review
Lecture, multimedia, discussions Ethical analysis, Final

assessments
CLO5

1/16/2025 6

week 1&2
Systems Analysis and

Design Basics

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Systems Analysis and Design
➢Systems development is systematic process which includes phases such as planning,
analysis, design, deployment, and maintenance.

➢ Systems analysis

➢ Systems design

1/16/2025 8

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Systems Analysis
➢It is a process of collecting and interpreting facts, identifying the problems, and
decomposition of a system into its components.

➢System analysis is conducted for the purpose of studying a system or its parts in order to
identify its objectives. It is a problem solving technique that improves the system and
ensures that all the components of the system work efficiently to accomplish their
purpose.

➢Analysis specifies what the system should do.

1/16/2025 9

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Systems Design
➢It is a process of planning a new business system or replacing an existing system by
defining its components or modules to satisfy the specific requirements.

➢ Before planning, you need to understand the old system thoroughly and determine how
computers can best be used in order to operate efficiently.

➢System Design focuses on how to accomplish the objective of the system.

1/16/2025 10

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Properties of Systems

➢Organization

➢Interaction

➢Interdependence

➢Integration

➢Integration

➢Central Objective

1/16/2025 11

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Properties of Systems
Organization

➢Organization implies structure and order. It is the
arrangement of components that helps to achieve
predetermined objectives.

➢An organization or organisation is an entity—such as

a company, or corporation or an institution (formal

organization), or an association—comprising one or
more people and having a particular purpose.

1/16/2025 12

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Properties of Systems
Interaction

➢Interaction defined by the manner in which the
components operate with each other. For example,
in an organization, purchasing department must
interact with production department and payroll
with personnel department.

Interdependence

➢ Interdependence means how the components of a
system depend on one another. For proper
functioning, the components are coordinated and
linked together according to a specified plan. The
output of one subsystem is the required by other
subsystem as input

1/16/2025 13

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Properties of Systems
Integration
➢Integration is concerned with how a system

components are connected together. It means that
the parts of the system work together within the
system even if each part performs a unique function.

Central Objective
➢The objective of system must be central. It may be

real or stated. It is not uncommon for an organization
to state an objective and operate to achieve another.

➢The users must know the main objective of a
computer application early in the analysis for a
successful design and conversion.

1/16/2025 14

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 3&4
Element of System & Type of System,

Categories of Information

1/16/2025 15

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Elements of System

1/16/2025 16

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Elements of System
Outputs and Inputs

➢The main aim of a system is to produce an
output which is useful for its user.

➢Inputs are the information that enters into
the system for processing.

➢Output is the outcome of processing.

1/16/2025 17

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Elements of System
Processor(s)

➢The processor is the element of a system that involves the actual transformation of input
into output.

➢It is the operational component of a system. Processors may modify the input either totally
or partially, depending on the output specification.

➢As the output specifications change, so does the processing. In some cases, input is also
modified to enable the processor for handling the transformation.

1/16/2025 18

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Elements of System
Control
➢The control element guides the system.
➢It is the decision–making subsystem that controls the pattern of activities governing input,

processing, and output.
➢The behaviour of a computer System is controlled by the Operating System and software. In

order to keep system in balance, what and how much input is needed is determined by
Output Specifications.

Feedback
➢Feedback provides the control in a dynamic system.
➢Positive feedback is routine in nature that encourages the performance of the system.
➢Negative feedback is informational in nature that provides the controller with information for

action.

1/16/2025 19

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Elements of System
Control

➢The Environment

➢The environment is the “super system” within which an organization operates.

➢It is the source of external elements that strike on the system.

➢It determines how a system must function. For example, vendors and competitors of organization’s environment,
may provide constraints that affect the actual performance of the business.

Boundaries and Interface
➢A system should be defined by its boundaries. Boundaries are the limits that identify its components, processes,

and interrelationship when it interfaces with another system.

➢Each system has boundaries that determine its sphere of influence and control.

➢The knowledge of the boundaries of a given system is crucial in determining the nature of its interface with other
systems for successful design.

1/16/2025 20

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Systems

➢Physical or Abstract Systems

➢Open or Closed Systems

➢Adaptive and Non Adaptive System

➢Permanent or Temporary System

➢Natural and Manufactured System

➢Man–Made Information Systems

1/16/2025 21

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Systems
Physical or Abstract Systems

➢Physical systems are tangible entities. We can touch and feel them.

➢Physical System may be static or dynamic in nature. For example, desks and chairs are the physical
parts of computer centre which are static. A programmed computer is a dynamic system in which
programs, data, and applications can change according to the user's needs.

➢Abstract systems are non-physical entities or conceptual that may be formulas, representation or
model of a real system.

Open or Closed Systems

➢An open system must interact with its environment. It receives inputs from and delivers outputs
to the outside of the system. For example, an information system which must adapt to the
changing environmental conditions.

➢A closed system does not interact with its environment. It is isolated from environmental
influences. A completely closed system is rare in reality.

1/16/2025 22

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Systems
Adaptive and Non Adaptive System
➢Adaptive System responds to the change in the environment in a way to improve their

performance and to survive. For example, human beings, animals.

➢Non Adaptive System is the system which does not respond to the environment. For
example, machines

Permanent or Temporary System
➢Permanent System persists for long time. For example, business policies.

➢Temporary System is made for specified time and after that they are demolished. For
example, A DJ system is set up for a program and it is dissembled after the program.

1/16/2025 23

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Systems
Natural and Manufactured System
➢Natural systems are created by the nature. For example, Solar system, seasonal system.

➢Manufactured System is the man-made system. For example, Rockets, dams, trains.

Man–Made Information Systems
➢ It is an interconnected set of information resources to manage data for particular

organization, under Direct Management Control (DMC).

➢ This system includes hardware, software, communication, data, and application for
producing information according to the need of an organization.

1/16/2025 24

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Categories of Information

1/16/2025 25

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Categories of Information
Strategic Information

➢This information is required by topmost management for long range planning policies for next few years. For example,
trends in revenues, financial investment, and human resources, and population growth.

➢This type of information is achieved with the aid of Decision Support System (DSS).

 Managerial Information

➢This type of Information is required by middle management for short and intermediate range planning which is in terms
of months. For example, sales analysis, cash flow projection, and annual financial statements.

➢It is achieved with the aid of Management Information Systems (MIS).

Operational information

➢This type of information is required by low management for daily and short term planning to enforce day-to-day
operational activities.

➢For example, keeping employee attendance records, overdue purchase orders, and current stocks available.

➢It is achieved with the aid of Data Processing Systems (DPS).

1/16/2025 26

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 5,6
Differences between System Analysis

and System Design, Role of System
Analyst, Qualities of the System Analyst,

1/16/2025 27

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Differences between System Analysis and
System Design

➢System analysis and system design are two critical phases in the development lifecycle
of a software system. While they are often used interchangeably, they serve distinct
purposes and involve different methodologies.

1/16/2025 28

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Differences between System Analysis
and System Design

➢System Analysis

◦ System analysis is the initial phase of a software development project where the
requirements of the system are gathered, analyzed, and documented. It involves
understanding the problem domain, identifying the stakeholders, and defining the scope
and objectives of the system.

Key Activities in System Analysis

• Requirement Gathering− Identifying the needs and expectations of the users and stakeholders.

• Requirement Analysis− Analyzing the gathered requirements to ensure consistency, feasibility,
and completeness.

• Feasibility Study− Assessing the technical, economic, and operational feasibility of the
proposed system.

• Process Modelling− Creating diagrams and models to represent the current and proposed
business processes.

• Data Modelling− Defining the data entities, attributes, and relationships within the system.

1/16/2025 29

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Role of System Analyst
❑The analyst plays a key role in information system development projects.

❑Must understand how to apply technology to solve business problems

❑Analyst may serve as a change agents who identify the organizational
improvement

1/16/2025 30

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Qualities of the System Analyst
❑Problem solver

❑Communicator

❑Strong personal and professional ethics

❑Self-disciplined and self -motivated

1/16/2025 31

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 32

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 7,8
Techniques Used in System
Analysis, System Design

Definition, Key Activities in
System Design, Difference

between system analysis and
design

1/16/2025 39

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Techniques Used in System Analysis

•Interviews− Gathering information from stakeholders through face-to-
face or online interviews.

•Surveys− Collecting data from a large number of respondents using
questionnaires.

1/16/2025 40

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Techniques Used in System Analysis

•Observation− Observing the current
system in operation to understand its
processes and workflows.

•Document Analysis− Examining existing
documents, reports, and manuals.

•Prototyping− Creating simplified models
or mock-up’s of the system to gather
feedback and refine requirements.

1/16/2025 41

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Design

System design is the
subsequent phase where the
detailed specifications of the
system are developed. It
involves designing the
architecture, components,
interfaces, and data
structures that will
implement the requirements
defined in the analysis
phase.

1/16/2025 42

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Key Activities in System Design

•Architectural Design− Determining the overall structure
and components of the system.

•Component Design− Designing individual components and
their interactions.

•Interface Design− Specifying the interfaces between
components and with external systems.

•Data Design− Designing the database schema and data
structures.

•Detailed Design− Creating detailed specifications for each
component, including algorithms and data flow.

1/16/2025 43

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Techniques Used in System Design

•Unified Modelling Language (UML)− A standardized modelling language used to
visualize, specify, construct, and document software systems.

•Data Flow Diagrams (DFDs)− Diagrams that illustrate the flow of data through a
system.

•Entity-Relationship Diagrams (ERDs)− Diagrams that represent the entities and
relationships between them in a database.

•Decision Trees− Diagrams that show the possible outcomes and decisions in a
process.

•State Transition Diagrams− Diagrams that represent the different states a system
can be in and the transitions between them.

1/16/2025 44

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Key Differences Between System Analysis and

 System Design

Sr.No. Feature System Analysis System Design

1 Focus
Understanding the
problem domain and
gathering requirements.

Specifying the solution and
designing the system.

2 Output Requirements document
System design
specifications

3 Techniques
Interviews, surveys,
observation, document
analysis

UML, DFDs, ERDs, decision
trees, state transition
diagrams

4 Level of Detail High-level understanding Detailed specifications

1/16/2025 45

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 7,8
The Relationship Between System

Analysis and System Design, Horizontal
and Vertical Scaling in System Design,

Benefits & Limitations
 of Horizontal, Vertical Scaling

1/16/2025 46

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

The Relationship Between System Analysis
and System Design

System analysis and system design are closely interconnected. The output of
the analysis phase (the requirements document) serves as the input for the
design phase. The design specifications must align with the requirements to
ensure that the developed system meets the needs of the users and
stakeholders.

1/16/2025 47

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Horizontal and Vertical Scaling in System
Design

➢What is Scaling?

◦ Before diving into the specifics of horizontal and vertical scaling, it is essential to
understand what scaling entails.

Scaling refers to the process of adjusting resources—such as computing
power, storage, or network capabilities—to ensure that an application can
handle increased demand without sacrificing performance. As systems grow
and face more users, more transactions, or increased data throughput,
scaling ensures that the system maintains its efficiency and does not become
a bottleneck.

1/16/2025 48

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 49

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 50

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Example…
➢Imagine you have a computer at home that
you use for various tasks such as web
browsing, word processing, and light
gaming. Over time, you find that your
computer struggles to keep up with more
resource-intensive tasks like video editing or
running advanced software.

➢Imagine you own a small delivery service
company that initially operates with a single
delivery van. As your business grows, you
start receiving more orders and delivering to
a larger area. However, you quickly realize
that the single van is not sufficient to handle
the increasing demand efficiently.

1/16/2025 51

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Benefits & Limitations
 of Vertical Scaling

Benefits Limitations

Simplicity− Vertical scaling is generally straightforward Single Point of Failure− If the server crashes or faces hardware
issues, the whole system may go down.

Reduced Complexity− Managing a single server reduces the
complexity of operations, including maintenance and
monitoring.

Resource Limits− Eventually, a physical server can only be
upgraded so much. There is a limit to how much CPU, RAM, or
storage can be added to a single machine.

Consistency− Since the system runs on a single machine, data
consistency is easier to maintain.

Cost− High-end servers and components are expensive.

Ideal for Monolithic Applications− Monolithic applications,
which are tightly coupled and difficult to break down into
smaller components,

Downtime During Upgrades− Depending on the system,
upgrading hardware (e.g., adding RAM or storage) might
require shutting down the server, which leads to downtime

1/16/2025 52

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Benefits & Limitations of Horizontal
Scaling

Benefits Limitations

No Theoretical Limit− As demand grows, you can continue
adding machines, thus providing potentially infinite scalability.

Increased Complexity− Managing multiple servers is
inherently more complex than managing a single server.

Fault Tolerance− Since multiple machines are involved, if one
node fails, the system can continue to operate using the
remaining nodes.

Data Consistency Issues− In distributed systems, maintaining
data consistency across multiple nodes can be challenging

Cost Efficiency at Scale− Instead of investing in one high-end
machine, horizontal scaling allows the use of many lower-end
machines.

Network Overhead− With more servers, communication
between nodes increases, potentially leading to network
latency and overhead.

Better for Cloud and Distributed Applications− Horizontal
scaling is ideal for cloud-native and distributed systems like
microservices architectures, where different parts of the
application can run independently on different servers.

Scaling the Entire Stack− For certain workloads, scaling
horizontally might require that the entire application stack be
designed for horizontal distribution, which may require
significant refactoring.

1/16/2025 53

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

When to Choose Horizontal or Vertical
Scaling

•Application Architecture− Distributed systems or microservices naturally lend
themselves to horizontal scaling, whereas monolithic applications are easier
to scale vertically.

•Budget− Horizontal scaling may be more cost-effective in the cloud, where
additional instances can be spun up as needed. Vertical scaling may result in
high costs due to expensive hardware.

•Consistency Requirements− Applications requiring strict data consistency (like
banking systems) may favour vertical scaling due to simpler data
management.

•Expected Growth− If your application is expected to grow rapidly, horizontal
scaling may be more appropriate since it offers theoretically unlimited scaling
potential.

1/16/2025 54

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 9
Understanding Capacity Estimation,

Steps in Capacity Estimation, Clustering
and Load Balancing

1/16/2025 55

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Understanding Capacity Estimation

Key Metrics

•Throughput− Transactions per second or requests
per second.

•Latency− Time to complete a transaction or
request.

•Response Time− The total time a user waits for a
response.

•Load and Concurrency− The number of concurrent
users or operations.

•Utilization− Percentage of capacity used.

•Business Impact− Outline the cost implications of
over-provisioning and the risk of under-
provisioning.

1/16/2025 56

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Steps in Capacity Estimation
➢Define Requirements− Identify the expected workload, peak traffic, and availability needs.

➢Analyze Historical Data− Use historical system data to find patterns and identify trends.

➢Model the System−
❖ Workload Modelling− Characterize the types and intensity of workloads (e.g., read-heavy vs. write-

heavy operations).

❖ Resource Consumption Modelling− Quantify resource usage for each workload (CPU, memory, disk
I/O).

❖ Concurrency and Scaling Factors− Include factors for concurrency and examine how each resource is
affected.

➢Conduct Load Testing− Perform stress and load tests to validate models and identify
bottlenecks.

➢Provision Resources− Calculate the required resources for the projected capacity with a margin
for peak usage.

➢Estimate Growth− Forecast workload growth based on business expectations.

1/16/2025 57

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Clustering and Load Balancing

➢Clustering and load balancing are essential for modern
applications to ensure they are scalable, highly available, and
perform well under varying loads. Here's why they are
significant.
• High Availability− Clustering ensures that if one server goes down,

others can take over, minimizing downtime and ensuring continuous
availability.

• Scalability− By adding more nodes to a cluster, applications can handle
more users and more data without performance degradation.

• Fault Tolerance− Clusters are designed to continue operating even when
individual nodes fail, which enhances the resilience of the application.

• Resource Management− Distributes workloads across multiple nodes,
optimizing resource usage and preventing any single node from
becoming a bottleneck.

1/16/2025 58

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Load Balancing
•Efficient Resource Utilization− Load balancing
distributes incoming traffic across multiple servers,
ensuring that no single server is overwhelmed,
which optimizes resource utilization.

•Improved Performance− By balancing the load,
applications can respond faster to user requests,
enhancing the overall user experience.

•Redundancy− Load balancing ensures that if one
server fails, traffic can be redirected to other
operational servers, providing redundancy.

•Scalability− Easily scales by adding more servers to
the pool, allowing applications to handle increasing
traffic seamlessly.

1/16/2025 59

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 10
System Development Life Cycle

1/16/2025 60

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Development Life Cycle
➢System Development Life Cycle (SDLC) is a conceptual model which
includes policies and procedures for developing or altering systems
throughout their life cycles.

1/16/2025 61

SDLC Activities

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Phases of SDLC

1/16/2025 62

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Feasibility Study or Planning

•Define the problem and scope of existing
system.

•Overview the new system and determine its
objectives.

•Confirm project feasibility and produce the
project Schedule.

•During this phase, threats, constraints,
integration and security of system are also
considered.

•A feasibility report for the entire project is
created at the end of this phase.

1/16/2025 63

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Analysis and Specification
•Gather, analyze, and validate the information.

•Define the requirements and prototypes for new system.

•Evaluate the alternatives and prioritize the requirements.

•Examine the information needs of end-user and enhances the system goal.

•A Software Requirement Specification (SRS) document, which specifies the
software, hardware, functional, and network requirements of the system is
prepared at the end of this phase.

1/16/2025 64

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Design

•Includes the design of application, network,
databases, user interfaces, and system interfaces.

•Transform the SRS document into logical
structure, which contains detailed and complete
set of specifications that can be implemented in a
programming language.

•Create a contingency, training, maintenance, and
operation plan.

•Review the proposed design. Ensure that the final
design must meet the requirements stated in SRS
document.

•Finally, prepare a design document which will be
used during next phases.

1/16/2025 65

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Implementation

•Implement the design into source code through coding.

•Combine all the modules together into training environment that detects
errors and defects.

•A test report which contains errors is prepared through test plan that
includes test related tasks such as test case generation, testing criteria, and
resource allocation for testing.

•Integrate the information system into its environment and install the new
system.

1/16/2025 66

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Maintenance/Support

•Include all the activities such as phone support or physical on-site support
for users that is required once the system is installing.

•Implement the changes that software might undergo over a period of time,
or implement any new requirements after the software is deployed at the
customer location.

•It also includes handling the residual errors and resolve any issues that may
exist in the system even after the testing phase.

•Maintenance and support may be needed for a longer time for large systems
and for a short time for smaller systems.

1/16/2025 67

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 11
Role of System Analyst, Attributes of a

Systems Analyst, Requirement
Determination

1/16/2025 68

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Role of System Analyst

•Defining and understanding the requirement of user
through various Fact finding techniques.

•Prioritizing the requirements by obtaining user
consensus.

•Gathering the facts or information and acquires the
opinions of users.

•Maintains analysis and evaluation to arrive at appropriate
system which is more user friendly.

•Suggests many flexible alternative solutions, pick the
best solution, and quantify cost and benefits.

•Draw certain specifications which are easily understood
by users and programmer in precise and detailed form.

•Implemented the logical design of system which must be
modular.

•Plan the periodicity for evaluation after it has been used
for some time, and modify the system as needed.

1/16/2025 69

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Attributes of a Systems Analyst

Assignment… !

Write short Paragraph of
Every skill on the Skills of
System Analyst of a specific
Given System

1/16/2025 70

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Requirement Determination

➢In the realm of systems analysis and
design, requirement determination is a
critical phase that sets the foundation for
successful software development. It
involves gathering, analyzing, and
documenting the needs and expectations
of stakeholders to ensure that the final
system meets its intended purpose.

1/16/2025 71

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Importance of Requirement Determination

•Clarity of Purpose− Clearly defined requirements help stakeholders understand
the system's purpose and functionality, reducing ambiguity.

•Stakeholder Satisfaction− Engaging stakeholders early and accurately capturing
their needs leads to greater satisfaction with the final product.

•Cost and Time Efficiency− Well-documented requirements minimize the risk of
costly changes during later development stages, leading to a more efficient
project lifecycle.

•Risk Management− Identifying potential issues early allows teams to devise
strategies to mitigate risks before they escalate.

•Framework for Development− Requirements serve as a guide for system design,
coding, testing, and implementation, ensuring alignment throughout the
development process.

1/16/2025 72

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Home Task.. !
➢Analyze the Methodologies for Requirement
Determination of A Specific System

1/16/2025 73

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 12
Systems Implementation, Structured

Analysis

1/16/2025 74

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Systems Implementation

Systems implementation is the process of:

1.defining how the information system should be built (i.e., physical system design),

2.ensuring that the information system is operational and used,

3.ensuring that the information system meets quality standard (i.e., quality assurance).

1/16/2025 75

Choosing the Right Implementation
Approach

➢Big Bang Approach

•Replacing old systems with new ones
at once.

•Pros and cons of immediate
transition.

➢Phased Implementation

•Gradual deployment in stages.

•Benefits of controlling scope and user
adaptation.

➢Pilot Implementation

•Deploying the system in a limited
area to assess performance.

•Benefits in risk reduction before full-
scale roll-out.

➢Parallel Implementation

•Running old and new systems
concurrently.

•Advantages for validation and
testing.

1/16/2025 76

Structured Analysis

Structured Analysis is a development
method that allows the analyst to
understand the system and its
activities in a logical way.

It is a systematic approach, which
uses graphical tools that analyze and
refine the objectives of an existing
system and develop a new system
specification which can be easily
understandable by user.

1/16/2025 77

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Structured Analysis Tools

1/16/2025 78

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 13
Data Flow Diagram

1/16/2025 79

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Data Flow Diagrams (DFD)

➢Data Flow Diagram (DFD)
represents the flow of data within
information systems. DFD provide
a graphical representation of the
data flow of a system that can be
understood by both technical and
non-technical users. The models
enable software engineers,
customers, and users to work
together effectively during the
analysis and specification of
requirements.

1/16/2025 80

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Data Flow Diagrams (DFD)
•It shows the flow of data between various functions of system and specifies
how the current system is implemented.

•It is an initial stage of design phase that functionally divides the requirement
specifications down to the lowest level of detail.

•Its graphical nature makes it a good communication tool between user and
analyst or analyst and system designer.

•It gives an overview of what data a system processes, what transformations
are performed, what data are stored, what results are produced and where
they flow.

1/16/2025 81

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Basic Elements of DFD

1/16/2025 82

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Physical DFD

• Physical DFD depicts how the system will be
implemented (or how the current system
operates).

• The processes represent the programs,
program modules, and manual procedures.

• The data stores represent the physical files
and databases, manual files.

• It show controls for validating input data, for
obtaining a record, for ensuring successful
completion of a process, and for system
security.

1/16/2025 83

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Logical DFD
•Logical DFD depicts how the
business operates.

•The processes represent the
business activities.

•The data stores represent the
collection of data regardless
of how the data are stored.

•It s how business controls.

1/16/2025 84

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Data Flow Diagrams

❑Level 0 DFD− Context Diagram
❑Purpose− It provides a broad overview of the system, showing the major entities

(or external systems) that interact with it and the primary flow of information.

1/16/2025 85

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Data Flow Diagrams

❑Level 1 DFD−
Decomposition of
the Main System
❑Purpose− To

break down the
main process
into smaller
sub-processes,
showing how
the system
functions
internally.

1/16/2025 86

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

The Development Process of Data Flow
Diagrams

Step 1: Define System Boundaries and Scope
• Identify all external entities interacting with the system.

• Define what lies within and outside the scope of the DFD.

Step 2: Identify Core Processes
• Pinpoint the main processes that handle data.

• Consider breaking down complex processes to increase clarity.

Step 3: Identify Data Stores
• Determine where the data will be stored within the system.

• Classify these stores based on how data is managed.

1/16/2025 87

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

The Development Process of Data Flow
Diagrams

Step 4: Identify Data Flows

•Establish the data flows between entities, processes, and stores.

•Verify that all necessary inputs and outputs are represented.

Step 5: Construct Context Diagram (Level 0 DFD)

•Create the highest-level DFD showing a single process and external entities.

•Connect entities with the main process through data flows.

1/16/2025 88

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

The Development Process of Data Flow
Diagrams

Step 6: Develop Detailed Levels (Level 1, Level 2)

•Break down the main process in the context diagram into sub-processes.

•Add detail with each level, ensuring accuracy in data flows and connections.

Step 7: Validation and Review

•Validate the DFD with stakeholders to ensure completeness.

•Adjust the diagram based on feedback to address any gaps.

1/16/2025 89

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Assignment…!
❖Give detailed Description of DFD

❖Consider any kind of system.
❖Now analyze and Draw Physical DFD

❖Logical DFD

❖Level 0 DFD

❖Level 1 DFD

❖Level 2 DFD

1/16/2025 90

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 14
Design Strategies, Bottom-Up Strategy,

Factors Affecting System Complexity

1/16/2025 91

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Design Strategies

Top-Down Strategy

The top-down strategy uses the modular approach to develop the design of a
system. It is called so because it starts from the top or the highest-level
module and moves towards the lowest level modules.

1/16/2025 92

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Design Strategies
➢In this technique, the highest-level module or main module
for developing the software is identified.

➢The main module is divided into several smaller and simpler
submodules or segments based on the task performed by each
module. Then, each submodule is further subdivided into
several submodules of next lower level.

➢This process of dividing each module into several submodules
continues until the lowest level modules, which cannot be
further subdivided, are not identified.

1/16/2025 93

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Bottom-Up Strategy

➢Bottom-Up Strategy
follows the modular
approach to develop
the design of the
system.

➢It is called so
because it starts
from the bottom or
the most basic level
modules and moves
towards the highest
level modules.

1/16/2025 94

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Bottom-Up Strategy
•The modules at the most basic or the lowest level are identified.

•These modules are then grouped together based on the function performed
by each module to form the next higher-level modules.

•Then, these modules are further combined to form the next higher-level
modules.

•This process of grouping several simpler modules to form higher level
modules continues until the main module of system development process is
achieved.

1/16/2025 95

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 15,16
Structured Design, Coupling,

Cohesion, System Design vs. Software
Design

1/16/2025 96

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Structured Design

➢Structured design is a data-flow based methodology that helps in identifying
the input and output of the developing system.

➢The main objective of structured design is to minimize the complexity and
increase the modularity of a program.

➢Structured design also helps in describing the functional aspects of the
system.

1/16/2025 97

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Structured Design
➢In structured designing, the
system specifications act as
a basis for graphically
representing the flow of data
and sequence of processes
involved in a software
development with the help
of DFDs.

➢After developing the DFDs
for the software system, the
next step is to develop the
structure chart.

1/16/2025 98

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Factors Affecting System Complexity
The two important concepts related to the system development that help in
determining the complexity of a system are coupling and cohesion.

Coupling

Coupling is the measure of the independence of components. It defines the
degree of dependency of each module of system development on the other.
In practice, this means the stronger the coupling between the modules in a
system, the more difficult it is to implement and maintain the system.

1/16/2025 99

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

coupling
High Coupling

These type of systems have interconnections with program units dependent
on each other. Changes to one subsystem leads to high impact on the other
subsystem.

1/16/2025 100

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

coupling
Low Coupling

These type of systems are made up of components which are independent or
almost independent. A change in one subsystem does not affect any other
subsystem.

1/16/2025 101

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Coupling Measures
•Content Coupling − When one component actually modifies
another,then the modified component is completely dependent
on modifying one.

•Common Coupling − When amount of coupling is reduced
somewhat by organizing system design so that data are
accessible from a common data store.

1/16/2025 102

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Coupling Measures
•Control Coupling − When one component passes parameters to
control the activity of another component.

•Stamp Coupling − When data structures is used to pass
information from one component to another.

•Data Coupling − When only data is passed then components are
connected by this coupling.

1/16/2025 103

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Cohesion
Cohesion is the measure of closeness of the relationship between its
components. It defines the amount of dependency of the components of a
module on one another. In practice, this means the systems designer must
ensure that −

•They do not split essential processes into fragmented modules.

•They do not gather together unrelated processes represented as processes
on the DFD into meaningless modules.

The best modules are those that are functionally cohesive. The worst
modules are those that are coincidentally cohesive.

1/16/2025 104

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 105

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 106

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 107

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Coupling
1.Content Coupling (Highest Coupling): One module directly modifies or relies on the
internal workings of another module (e.g., accessing local data of another module). This
type of coupling is highly undesirable because changes in one module can have
significant and unpredictable effects on another.

2.Common Coupling: Multiple modules share global data or variables. This is also
undesirable as changes to the global data can affect all the modules that use it, leading
to potential side effects and difficulties in tracking and managing changes.

3.External Coupling: Modules share an externally imposed data format, communication
protocol, or interface. This type of coupling occurs when modules are dependent on
external systems or hardware, making the system vulnerable to changes in those
external entities.

1/16/2025 108

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Coupling
4.Control Coupling: One module controls the behavior of another by passing it
information on what to do (e.g., passing a control flag). This type of coupling is less
desirable because it implies that one module is dictating the flow of control in another
module.

5.Stamp (Data-Structured) Coupling: Modules share a composite data structure and
use only a part of it. This is less tightly coupled than control or common coupling but
can still lead to dependencies and the need to understand the entire data structure.

6.Data Coupling (Lowest Coupling): Modules share data through parameters. Each
data item is an elementary piece of data, and no control data is passed. This is the most
desirable form of coupling because it minimizes dependencies and makes modules
more independent and reusable.

1/16/2025 109

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Cohesion
1.Coincidental Cohesion (Lowest Cohesion): Elements are grouped arbitrarily and have little to no meaningful
relationship to each other. This type of cohesion is undesirable because the module's purpose is unclear, making
it difficult to understand and maintain.

2.Logical Cohesion: Elements are grouped because they perform similar kinds of activities (e.g., several functions
performing input operations). This type is better than coincidental cohesion but still not ideal, as it can lead to less
clarity about the module’s primary purpose.

3.Temporal Cohesion: Elements are grouped because they are involved in activities that are related in time (e.g.,
initialization tasks that must occur at system startup). While more related than logical cohesion, it still mixes
unrelated functionalities tied only by the timing of their execution.

4.Procedural Cohesion: Elements are grouped because they always follow a certain sequence of execution (e.g., a
sequence of steps in a process). This is better than temporal cohesion but still not ideal, as it focuses on the order
of execution rather than the functional relationship.

5.Communicational (Informational) Cohesion: Elements are grouped because they operate on the same data or
contribute to the same data structure. This type of cohesion is stronger as it

1/16/2025 110

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Types of Cohesion
5.ensures that all elements in the module are functionally related through the data they
manipulate.

6.Sequential Cohesion: Elements are grouped because the output from one part serves
as input to another part (e.g., a series of steps in data processing). This type is better
than procedural cohesion as it emphasizes the functional relationship between the
steps.

7.Functional Cohesion (Highest Cohesion): Elements are grouped because they all
contribute to a single, well-defined task or function. This is the most desirable form of
cohesion. It ensures that each module performs one task or function, making it easy to
understand, maintain, and reuse.

1/16/2025 111

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Design vs. Software Design
What is System Design?

System design is the process of defining the architecture, components, modules,
interfaces, and data for a system to satisfy specified requirements. It involves
translating user requirements into a detailed blueprint that guides the implementation
phase. The goal is to create a well-organized and efficient structure that meets the
intended purpose while considering factors like scalability, maintainability, and
performance.

1/16/2025 112

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

•What is Software Design?

•Software design encompasses various aspects, including choosing appropriate
algorithms, data structures, modules, interfaces, and patterns to ensure the software's
functionality, maintainability, scalability, and performance.

•It also involves considering factors such as usability, security, and compatibility to
create a fast and user-friendly software solution.

1/16/2025 113

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Components of System Design
•Hardware Components: This includes physical devices such as servers, computers,
storage devices, networking equipment, sensors, and other peripherals necessary for
system operation.

•Software Components: These encompass the programs, applications, and operating
systems required to control and manage hardware resources, process data, and
facilitate communication between system elements.

•Network Infrastructure: This comprises the network architecture, protocols, and
communication channels that enable data transfer and interaction between system
components, both within the local environment and across distributed networks.

1/16/2025 114

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Components of System Design
•Data Management: This involves designing databases, data models, data storage, and
retrieval mechanisms to ensure efficient handling, processing, and storage of data within the
system.

•Processes and Workflows: This includes defining the sequence of tasks, activities, and
operations required to accomplish specific goals or functions within the system, often
represented through flowcharts, diagrams, or business process models.

•Security Mechanisms: These encompass measures such as access control, encryption,
authentication, and authorization to protect system assets, data, and resources from
unauthorized access, manipulation, or breaches.

•Scalability and Performance Considerations: This involves designing the system architecture
and infrastructure to accommodate increasing loads, user bases, and data volumes while
maintaining optimal performance levels.

1/16/2025 115

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Components of System Design
•Reliability and Fault Tolerance: This includes implementing redundancy, failover
mechanisms, and error-handling strategies to ensure uninterrupted operation and
resilience against hardware failures, software errors, or external disruptions.

•User Interface (UI) and User Experience (UX): These aspects focus on designing
intuitive interfaces, workflows, and interactions to enhance user satisfaction,
productivity, and accessibility within the system.

•Integration and Interoperability: This involves ensuring seamless interaction and
compatibility between different system components, external systems, and third-party
services through standardized interfaces, APIs, and protocols.

1/16/2025 116

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Components of Software Design
•Architectural Design: This involves defining the overall structure and organization of the
software system, including high-level components, their interactions, and the distribution of
responsibilities among them. Common architectural patterns include layered architecture,
client-server architecture, microservices architecture, and more.

•Module Design: Modularization involves breaking down the system into smaller, cohesive
units or modules, each responsible for specific functionalities. This promotes code reusability,
maintainability, and scalability. Design principles such as cohesion and coupling guide the
creation of effective modules.

•Data Design: This focuses on designing the data structures, databases, and data models
required to represent and manage the application's data effectively. It includes considerations
such as data integrity, normalization, indexing, and optimization for efficient storage and
retrieval.

1/16/2025 117

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Components of Software Design
•User Interface (UI) Design: UI design involves creating intuitive and user-friendly
interfaces that enable users to interact with the software easily. It encompasses layout
design, navigation flows, visual elements, and usability considerations to enhance the
user experience.

•Algorithm Design: Algorithms are at the core of software systems, determining how
tasks are performed efficiently. Software design involves selecting and designing
appropriate algorithms for various operations, considering factors such as time
complexity, space complexity, and optimization techniques.

•Error Handling and Exception Design: This component focuses on designing
mechanisms to detect, report, and handle errors and exceptions gracefully within the
software system. It includes strategies such as exception handling, logging, and
recovery mechanisms to ensure robustness and reliability.

1/16/2025 118

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Components of Software Design
•Security Design: Security design involves incorporating measures to protect the
software system against unauthorized access, data breaches, and malicious attacks.
This includes authentication, authorization, encryption, input validation, and other
security controls to mitigate security risks.

•Performance Design: Performance design aims to optimize the software system's
speed, responsiveness, and resource utilization. It involves profiling, benchmarking, and
optimizing critical components, algorithms, and database queries to achieve desired
performance goals.

•Concurrency and Multithreading Design: For concurrent and parallel execution of
tasks, software design includes designing concurrent algorithms, synchronization
mechanisms, and thread-safe data structures to ensure correctness and avoid race
conditions.

1/16/2025 119

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Challenges in System Design
•Scalability: Designing a system that can handle increasing loads, data volumes, and
user bases without compromising performance or functionality.

•Reliability: Ensuring continuous and dependable operation of the system, even in the
face of hardware failures, software errors, or external disruptions.

•Availability: Designing redundancy and failover mechanisms to minimize downtime
and ensure that critical services are always accessible to users.

•Performance Optimization: Balancing resource utilization, response times, and
throughput to achieve optimal system performance under varying workloads and
conditions.

1/16/2025 120

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Challenges in System Design
•Complex Systems Integration: Integrating diverse hardware and software components,
legacy systems, and third-party services while maintaining compatibility and interoperability.

•Security: Implementing robust security measures to protect sensitive data, prevent
unauthorized access, and mitigate cybersecurity threats such as hacking, malware, and data
breaches.

•Legacy Systems: Upgrading or migrating legacy systems to modern architectures while
minimizing disruption and ensuring compatibility with existing infrastructure and processes.

•Evolving Requirements: Adapting the system design to accommodate changing business
needs, technological advancements, and regulatory requirements over time.

1/16/2025 121

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Challenges in Software Design
•Requirements Management: Gathering, understanding, and managing requirements
from stakeholders can be complex. Ensuring that requirements are clear, complete, and
consistent is essential to successful software design.

•Scalability: Designing software to handle increasing amounts of data, users, or
transactions can be challenging. Ensuring that the architecture and design can scale
efficiently without sacrificing performance is crucial.

•Maintainability: Writing code that is easy to understand, modify, and extend is
essential for long-term success. Poorly designed software can become difficult and
costly to maintain over time.

1/16/2025 122

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Challenges in Software Design
•Flexibility and Extensibility: Designing software that can adapt to changing
requirements and environments is vital. Building a flexible and extensible architecture
allows for easier integration of new features and technologies.

•Performance Optimization: Balancing performance requirements with other design
considerations can be challenging. Optimizing algorithms, data structures, and system
architecture to meet performance goals without sacrificing other qualities such as
maintainability and scalability is crucial.

1/16/2025 123

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Challenges in Software Design
•Security: Ensuring that software is secure against various threats, such as unauthorized
access, data breaches, and malicious attacks, is essential. Designing robust security
measures into the architecture and implementing secure coding practices are critical
aspects of software design.

•Integration and Interoperability: Integrating software components with external
systems, APIs, and third-party services can be complex. Ensuring compatibility,
reliability, and seamless interaction between different components is essential for
interoperability.

1/16/2025 124

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Week 16, 17
System Design - High Level Design, Low
Level Design, System Implementation,

Testing

1/16/2025 125

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Design - High Level Design
Definition

High-Level Design (HLD) provides a macro view of the system. It outlines the
architecture, subsystems, modules, and how they interact. Unlike Low-Level
Design, which deals with specific implementations, HLD focuses on−

•The system's major components.

•Communication protocols between components.

•Scalability and performance considerations.

1/16/2025 126

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Goals of High-Level Design
•Clarity− Provide a clear and shared understanding of the system's architecture.

•Direction− Guide developers by offering an architectural roadmap.

•Scalability− Anticipate future growth and design for it.

•Alignment− Ensure that technical decisions align with business objectives.

•Key Components of High-Level Design

• System Architecture

• Subsystems and Modules

• Data Flow

• Database Design

1/16/2025 127

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)
1/16/2025 128

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

What is Low-Level Design (LLD)?
Low-Level Design refers to the process of designing the internal workings of
individual components in a software system. It breaks down the abstract
architectural ideas from HLD into concrete, implementable details.

Key characteristics of LLD
• Detailed documentation of classes, methods, and interactions.

• Definitions of how system components communicate internally.

• Inclusion of diagrams like UML (Unified Modeling Language) to represent
relationships and workflows.

1/16/2025 129

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Low Level vs High Level

1/16/2025 130

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Low Level vs High Level

1/16/2025 131

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Implementation
❖System Implementation uses the structure created during architectural design and the results
of system analysis to construct system elements that meet the stakeholder needs and
requirements and system requirements developed in the early life cycle phases.

❖These system elements are then integrated to form intermediate aggregates and finally the
complete system-of-interest (SoI).

❖The purpose of the implementation process is to design and create (or fabricate) a
system element conforming to that element’s design properties and/or requirements.

❖The element is constructed employing appropriate technologies and industry practices.

❖This process bridges the system definition processes and the integration process.

1/16/2025 132

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Implementation
Following Figure portrays how the outputs of system definition relate to system implementation,
which produces the implemented (system) elements required to produce aggregates and the SoI.

1/16/2025 133

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

System Testing
❖What is System Testing?
❖System Testing is a level of testing that validates the complete and fully integrated software

product. The purpose of a system test is to evaluate the end-to-end system specifications.

•Black Box Testing

•White Box Testing

1/16/2025 134

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

➢White box testing is the
testing of the internal
workings or code of a
software application. In
contrast, black box or
System Testing is the
opposite. System test
involves the external
workings of the software
from the user’s perspective.

1/16/2025 135

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Black Box Testing
Black Box Testing is an important part of making sure software works as it should.
Instead of exploring the code, testers check how the software behaves from the
outside, just like users would. This helps catch any issues or bugs that might affect
how the software works.

1/16/2025 136

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Software Testing Hierarchy
•Unit testing performed on each module or block of code during
development. Unit Testing is normally done by the programmer who writes
the code.

•Integration testing done before, during and after integration of a new
module into the main software package. This involves testing of each
individual code module. One piece of software can contain several modules
which are often created by several different programmers. It is crucial to test
each module’s effect on the entire program model.

1/16/2025 137

Partho Sarathi Sarker, Asst. Prof. Dept. of CSE

University of Global Village (UGV)

Testing Hierarchy
•System testing done by a professional testing agent on the completed software product
before it is introduced to the market.

•Acceptance testing – beta testing of the product done by the actual end users.

1/16/2025 138

	Slide 1: CSE0613-2201 System Analysis & Design
	Slide 2: System Analysis & Design
	Slide 3: Summary of Course Content
	Slide 4: Assessment Pattern
	Slide 5: Course Plan
	Slide 6: Course Plan
	Slide 7: week 1&2 Systems Analysis and Design Basics
	Slide 8: Systems Analysis and Design
	Slide 9: Systems Analysis
	Slide 10: Systems Design
	Slide 11: Properties of Systems
	Slide 12: Properties of Systems
	Slide 13: Properties of Systems
	Slide 14: Properties of Systems
	Slide 15: Week 3&4 Element of System & Type of System, Categories of Information
	Slide 16: Elements of System
	Slide 17: Elements of System
	Slide 18: Elements of System
	Slide 19: Elements of System
	Slide 20: Elements of System
	Slide 21: Types of Systems
	Slide 22: Types of Systems
	Slide 23: Types of Systems
	Slide 24: Types of Systems
	Slide 25: Categories of Information
	Slide 26: Categories of Information
	Slide 27: Week 5,6 Differences between System Analysis and System Design, Role of System Analyst, Qualities of the System Analyst,
	Slide 28: Differences between System Analysis and System Design
	Slide 29: Differences between System Analysis and System Design
	Slide 30: Role of System Analyst
	Slide 31: Qualities of the System Analyst
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Week 7,8 Techniques Used in System Analysis, System Design Definition, Key Activities in System Design, Difference between system analysis and design
	Slide 40: Techniques Used in System Analysis
	Slide 41: Techniques Used in System Analysis
	Slide 42: System Design
	Slide 43: Key Activities in System Design
	Slide 44: Techniques Used in System Design
	Slide 45: Key Differences Between System Analysis and System Design
	Slide 46: Week 7,8 The Relationship Between System Analysis and System Design, Horizontal and Vertical Scaling in System Design, Benefits & Limitations of Horizontal, Vertical Scaling
	Slide 47: The Relationship Between System Analysis and System Design
	Slide 48: Horizontal and Vertical Scaling in System Design
	Slide 49
	Slide 50
	Slide 51: Example…
	Slide 52: Benefits & Limitations of Vertical Scaling
	Slide 53: Benefits & Limitations of Horizontal Scaling
	Slide 54: When to Choose Horizontal or Vertical Scaling
	Slide 55: Week 9 Understanding Capacity Estimation, Steps in Capacity Estimation, Clustering and Load Balancing
	Slide 56: Understanding Capacity Estimation
	Slide 57: Steps in Capacity Estimation
	Slide 58: Clustering and Load Balancing
	Slide 59: Load Balancing
	Slide 60: Week 10 System Development Life Cycle
	Slide 61: System Development Life Cycle
	Slide 62: Phases of SDLC
	Slide 63: Feasibility Study or Planning
	Slide 64: Analysis and Specification
	Slide 65: System Design
	Slide 66: Implementation
	Slide 67: Maintenance/Support
	Slide 68: Week 11 Role of System Analyst, Attributes of a Systems Analyst, Requirement Determination
	Slide 69: Role of System Analyst
	Slide 70: Attributes of a Systems Analyst
	Slide 71: Requirement Determination
	Slide 72: Importance of Requirement Determination
	Slide 73: Home Task.. !
	Slide 74: Week 12 Systems Implementation, Structured Analysis
	Slide 75: Systems Implementation
	Slide 76: Choosing the Right Implementation Approach
	Slide 77: Structured Analysis
	Slide 78: Structured Analysis Tools
	Slide 79: Week 13 Data Flow Diagram
	Slide 80: Data Flow Diagrams (DFD)
	Slide 81: Data Flow Diagrams (DFD)
	Slide 82: Basic Elements of DFD
	Slide 83: Physical DFD
	Slide 84: Logical DFD
	Slide 85: Types of Data Flow Diagrams
	Slide 86: Types of Data Flow Diagrams
	Slide 87: The Development Process of Data Flow Diagrams
	Slide 88: The Development Process of Data Flow Diagrams
	Slide 89: The Development Process of Data Flow Diagrams
	Slide 90: Assignment…!
	Slide 91: Week 14 Design Strategies, Bottom-Up Strategy, Factors Affecting System Complexity
	Slide 92: Design Strategies
	Slide 93: Design Strategies
	Slide 94: Bottom-Up Strategy
	Slide 95: Bottom-Up Strategy
	Slide 96: Week 15,16 Structured Design, Coupling, Cohesion, System Design vs. Software Design
	Slide 97: Structured Design
	Slide 98: Structured Design
	Slide 99: Factors Affecting System Complexity
	Slide 100: coupling
	Slide 101: coupling
	Slide 102: Coupling Measures
	Slide 103: Coupling Measures
	Slide 104: Cohesion
	Slide 105
	Slide 106
	Slide 107
	Slide 108: Types of Coupling
	Slide 109: Types of Coupling
	Slide 110: Types of Cohesion
	Slide 111: Types of Cohesion
	Slide 112: System Design vs. Software Design
	Slide 113
	Slide 114: Components of System Design
	Slide 115: Components of System Design
	Slide 116: Components of System Design
	Slide 117: Components of Software Design
	Slide 118: Components of Software Design
	Slide 119: Components of Software Design
	Slide 120: Challenges in System Design
	Slide 121: Challenges in System Design
	Slide 122: Challenges in Software Design
	Slide 123: Challenges in Software Design
	Slide 124: Challenges in Software Design
	Slide 125: Week 16, 17 System Design - High Level Design, Low Level Design, System Implementation, Testing
	Slide 126: System Design - High Level Design
	Slide 127: Goals of High-Level Design
	Slide 128
	Slide 129: What is Low-Level Design (LLD)?
	Slide 130: Low Level vs High Level
	Slide 131: Low Level vs High Level
	Slide 132: System Implementation
	Slide 133: System Implementation
	Slide 134: System Testing
	Slide 135
	Slide 136: Black Box Testing
	Slide 137: Software Testing Hierarchy
	Slide 138: Testing Hierarchy

