
1 

Prepared by:  

Md. Abdur Razzak 
Asst. Professor. 

Department of CSE 

 



Course 
Code 

Credits 

Exam 
Hours 

Total 
Marks 

• CSE 0612-
2207 

• 3.00 

• 3.00 

150 



CLO 1 

•Describe the fundamental concepts of databases, including 
data models, database architectures, and database 
management systems. Students will be able to explain the 
benefits and limitations of different types of databases, and 
identify use cases where each type would be appropriate. 

CLO 2 
 

 

CLO 3 
 

 

•Understand and apply principles of database design, including 
entity-relationship modeling, normalization, and data modeling 
tools. Students will be able to create and optimize databases 
that are efficient, scalable, and maintainable. 

•Create and execute SQL queries to retrieve and manipulate 
data in a relational database. Students will be able to design 
and implement SQL statements for a variety of use cases, 
including querying, updating, and aggregating data. 



CLO 4 

•Apply database administration and security principles to 
manage and protect data in a database management system. 
Students will be able to configure database security settings, 
backup and restore data, and tune database performance. 

CLO 5 
 

 

•Identify and apply principles of NoSQL databases, including 
document, column family, graph, and key-value stores. 
Students will be able to analyze the benefits and limitations of 
different types of NoSQL databases, and identify use cases 
where each type would be appropriate. They will also be able 
to create and optimize NoSQL databases for specific use 
cases. 



Assessment Pattern 

30% 

10% 

10% 10% 

40% 

CIE Test Assignments Quizes Attendance SEE

CIE- Continues Internal Evaluation 

SEE- Semester End Examination 



6 

Bloom's 
Category 

Marks (out of 
90) 

Tests 
(45) 

Assignments 
(15) 

Quizzes 
(15) 

Attendance 
(15) 

Remember 5 03     
Understand 5 04 05   

Apply 15 05 05   
Analyze 10       
Evaluate 5 03 05   
Create 5       

Bloom's Category Test 

Remember 7 

Understand 7 

Apply               20 

Analyze               15 

Evaluate 6 

Create 5 

CIE- Continuous Internal Evaluation 

(90 Marks) 

SEE- Semester End Examination (60 Marks) 



7 

Week 
No 

Topic Teaching 
Learning 
Strategy(s) 

Assessment 
Strategy(s) 

Alignment 
to CLO 

1 -Introduction to Database Systems 

-Understand the history and importance of 

database systems 

Lecture, 

Reading 

Assignments 

 

Quiz, Assignment CLO1 

2 Data Models 

Discuss different types of data models and 

their 

Applications 

Lecture, 

Reading 

Assignments 

QA, Quiz, 

Assignment 

CLO1, CLO2 

3 Database Design ,ER-Diagram and Unified 

Modeling Language 

Explore ER modeling and normalization 

techniques 

Lecture, Case Studies Quiz, 

Assignment 

CLO2 

4 The relational algebra and calculus 

Relational algebra: introduction, Selection 

and projection, set operations, renaming, 

Joins, Division, syntax Calculus: Tuple 

relational calculus, Domain relational 

Calculus. 

Lecture, Case Studies Quiz, 

Assignment 

CLO2 

5 The relational algebra and calculus 

renaming, Joins, Division, syntax Calculus: 

Tuple relational calculus, Domain 

relational Calculus. 

Lecture, Hands-on 
Labs 

Quiz, Lab 
Reports 

CLO3 



8 

6 SQL Basics 

Learn basic SQL syntax and 

commands 

Lecture, Case 

Studies 

Quiz, 

Assignm

ent 

CLO2 

7 SQL Basics (Continued) 

basic SQL syntax and commands 

Lecture, Case 

Studies 

Quiz, 

Case 

Study 

Reports 

CLO4 

8 Advanced SQL 

Understand advanced SQL queries and 

transaction management 

Lecture, Problem 

Solving 

Quiz, 

Problem 

Sets 

CLO4 

9 Constraints,  

What is constraints, types of 

constrains, Integrity constraints,  

Lecture, Problem 

Solving 

Quiz, 

Problem 

Sets 

CLO5 

10 Views 

Views: Introduction to views, data 

independence, security, updates on views, 

comparison between tables and views 

Lecture, Guest 

Lectures 

Quiz, 

Presenta

tion 

CLO5 

 11 Indexing  

Basic concepts, Ordered Indices,  

Lecture, Discussions Quiz, 

Assignme

nt 

CLO5 



9 

12 Hashing 

Hash Based Indexing, Tree based Indexing 

Lecture, Case 

Studies 

Quiz, 

Case 

Study 

Reports 

CLO4 

13 Transaction management and Concurrency 

control 

Transaction management: ACID properties, 

serializability and concurrency control, Lock 

based concurrency control (2PL, 

Deadlocks),Time stamping methods, 

optimistic methods, database recovery 

management. 

Lecture, Problem 

Solving 

Quiz, 

Problem 

Sets 

CLO4 

14 NoSQL Databases 

Discuss NoSQL databases and their 

applications 

Lecture, Problem 

Solving 

Quiz, 

Problem 

Sets 

CLO5 

15 Database Recovery techniques 

Discuss on database recovery techniques 

Lecture, Guest 

Lectures 

Quiz, 

Presentat

ion 

CLO5 

16 Database Recovery techniques 

Discuss on database recovery 

techniques(advanced) 

 17 Future Trends in Databases 

Study emerging trends and future directions 

in database technology 

Lecture, Discussions Quiz, 

Assignme

nt 

CLO5 



10 



 What is a Database? 

 
Definition: A database is a structured collection 
of data that can be accessed, managed, and 
updated. It serves as a repository for organized 
data that supports efficient retrieval and 
management. 

Examples: 

A customer directory in an e-commerce application. 

A hospital’s patient records system. 

An educational institution’s student database. 

 



What is a Database? 

 Characteristics of Databases: 

 

1 
• Organized and structured. 

2 
• Persistent and stored electronically. 

3 

• Accessible by multiple users or 
applications. 



What is a Database Management System 

(DBMS)? 

Definition: A Database Management System 
(DBMS) is software designed to define, 
manipulate, retrieve, and manage data in a 
database. 
 

Core Functions of DBMS: 

Data Storage: Efficiently stores large amounts of data. 

Data Retrieval: Allows quick access to data using 
queries. 

Data Manipulation: Supports operations like 
insertion, deletion, and updating of records. 

Data Security: Ensures authorized access and protects 
data integrity. 

 



Popular DBMS Examples: 

 Relational DBMS: MySQL, PostgreSQL, Oracle 
Database. 

 NoSQL DBMS: MongoDB, Cassandra, 
DynamoDB. 

 Cloud DBMS: Google Cloud Spanner, Amazon 
RDS. 

 



 

Key Differences Between Data and Databases 

 Aspect Data Database 

Definition 
Raw, unprocessed 
facts and figures. 

Organized collection 
of structured data. 

Example “John, 25” 
A table with columns: 
Name, Age. 

Purpose 
Basic unit of 
information. 

Stores and manages 
related data. 



 

Components of a DBMS 

 • Database Engine: Core software component that 
performs storage and retrieval tasks. 

• Query Processor: Interprets user queries (e.g., 
SQL commands) and converts them into actionable 
tasks. 

• Data Definition Language (DDL): Defines 
database schema and structure (e.g., CREATE, 
ALTER). 

• Data Manipulation Language (DML): 
Performs data operations like insertion, deletion, 
and updates (e.g., INSERT, UPDATE, DELETE). 

• Transaction Manager: Ensures data integrity 
and consistency during concurrent user access. 
 



Types of DBMS 

• Relational DBMS (RDBMS): 

▫ Data is organized in tables with rows and columns. 

▫ Follows a strict schema and supports SQL. 

▫ Example: MySQL, PostgreSQL. 

• NoSQL DBMS: 

▫ Designed for unstructured or semi-structured 
data. 

▫ Uses document, key-value, or graph data models. 

▫ Example: MongoDB, Redis. 

 



Types of DBMS(Cont.) 
• Hierarchical DBMS: 

▫ Data is organized in a tree-like structure. 

▫ Example: IBM’s IMS. 

• Network DBMS: 

▫ Data is organized in a graph, with multiple 
parent-child relationships. 

▫ Example: Integrated Data Store (IDS). 

• Object-Oriented DBMS (OODBMS): 

▫ Supports object-oriented data models. 

▫ Example: ObjectDB. 

 



Data Centralization: 

 Provides a single location for data 

storage, reducing redundancy. 

Data Integrity and Consistency: 

 Enforces rules to ensure data remains 

accurate and consistent. 

Data Security: 

 Implements user authentication and 

access controls. 

 



Backup and Recovery: 

 Ensures data is protected and can be 

restored in case of failure. 

Concurrent Access: 

 Supports multiple users accessing the 

database simultaneously without 

conflicts. 

 



Real-World Applications of Databases 

• Banking: 
▫ Customer accounts, transactions, and loan 

processing. 
• Healthcare: 

▫ Patient records, prescriptions, and billing. 
• Retail: 

▫ Inventory management, customer orders, and 
sales analytics. 

• Education: 
▫ Student management, course registrations, and 

grading systems. 
• Social Media: 

▫ User profiles, posts, and interactions. 
 



Evolution of Database Systems 

• Early Systems: 

▫ Flat-file systems and manual data storage 
techniques. 

• Hierarchical and Network Models: 

▫ Emerged in the 1960s to handle more complex 
data relationships. 

• Relational Databases: 

▫ Introduced by E.F. Codd in the 1970s; became 
the standard for structured data. 

• NoSQL and Cloud Databases: 

▫ Developed in the 21st century to handle large-
scale, unstructured data and distributed systems. 

 



23 



Introduction to Data 
Models 

O Definition: A data model defines the structure, 

organization, and constraints of data stored in a 

database. It provides a framework for how data 

is stored, accessed, and manipulated. 

O Purpose of Data Models: 

O To represent real-world entities and their 

relationships. 

O To ensure data consistency and integrity. 

O To facilitate the design and implementation of 

databases. 

 



Components of a Data Model: 

• Structure: Defines how data is organized (e.g., 
tables, hierarchies). 

• Operations: Specifies the methods to 
manipulate data (e.g., insert, update). 

• Constraints: Enforces rules to maintain data 
integrity. 

 



Hierarchical Data Model 
Definition: Data is organized in a tree-like 

structure with parent-child relationships. 

Characteristics: 

 Each child node has only one parent node. 

 Relationships are represented as a hierarchy. 

Advantages: 

 Simple to understand and implement. 

 Fast data access for parent-child relationships. 

 



Types of Data Models(cont.) 

O Disadvantages: 

O Rigid structure; difficult to handle many-to-

many relationships. 

O Modifications require restructuring the 

hierarchy. 

O Example: 

O An organizational structure where each 

employee reports to one manager. 

 



Types of Data Models(cont.) 

• Network Data Model 

• Definition: Data is organized in a graph structure, 
allowing multiple parent-child relationships. 

• Characteristics: 

▫ Data elements are connected by links, representing 
relationships. 

▫ More flexible than the hierarchical model. 

• Advantages: 

▫ Supports many-to-many relationships. 

▫ Efficient data retrieval for complex relationships. 

 



Types of Data Models(cont.) 

• Disadvantages: 

▫ Complex to design and maintain. 

▫ Requires specialized knowledge to implement. 

• Example: 

▫ A flight reservation system where a flight can 
connect to multiple airports. 

 



Types of Data Models(cont.) 
 Relational Data Model 

 Definition: Data is organized in tables (relations) with rows and 
columns. 

 Characteristics: 

 Each table represents an entity, and each row represents an instance 
of the entity. 

 Relationships between tables are established using keys (primary and 
foreign). 

 Advantages: 

 Simple and widely used. 

 Supports SQL for data manipulation. 

 Ensures data consistency and integrity. 

 



Types of Data Models(cont.) 

• Disadvantages: 

▫ Performance issues with very large datasets. 

▫ Limited for complex relationships like hierarchical 
or network structures. 

• Example: 

▫ A student database with tables for Students, 
Courses, and Enrollments. 

 



 Object-Oriented Data Model 

 Definition: Combines object-oriented 

programming concepts with database principles. 

 Characteristics: 

 Data is represented as objects with attributes and 

methods. 

 Supports inheritance, encapsulation, and 

polymorphism. 

 Advantages: 

 Ideal for applications with complex data 

relationships. 

 Supports multimedia data (images, videos). 

 



Types of Data Models(cont.) 

• Disadvantages: 

▫ Complex to implement and maintain. 

▫ Less popular compared to the relational model. 

• Example: 

▫ A multimedia library where books, videos, and 
audio files are stored as objects. 

 



Types of Data Models(cont.) 
 Entity-Relationship (ER) Model 

 Definition: Represents data as entities, attributes, and 
relationships between entities. 

 Characteristics: 

 Entities: Objects or things in the real world (e.g., Student, 
Course). 

 Attributes: Properties of entities (e.g., Name, Age). 

 Relationships: Associations between entities (e.g., 
Enrolled). 

 Advantages: 

 Easy to visualize data relationships using ER diagrams. 

 Useful for designing relational databases. 

 



 Disadvantages: 

 Limited to high-level design; needs to be converted 
into a physical model. 

 Example: 

 An ER diagram showing Students enrolled in 
Courses taught by Professors. 

 



Types of Data Models(cont.) 

 NoSQL Data Models 

 Definition: Designed for unstructured or semi-
structured data, offering high scalability and flexibility. 

 Types of NoSQL Models: 

 Document Model: Stores data in JSON or BSON format 
(e.g., MongoDB). 

 Key-Value Model: Data stored as key-value pairs (e.g., 
Redis). 

 Column-Family Model: Optimized for read/write 
operations in columns (e.g., Cassandra). 

 Graph Model: Focuses on relationships using nodes and 
edges (e.g., Neo4j). 

 Advantages: 

 Highly scalable and suitable for big data. 

 Flexible schema design. 

 



Types of Data Models(cont.) 

 Disadvantages: 

 Lacks standardization. 

 Limited support for complex queries. 

 Example: 

 Social media platforms storing user interactions in a 

graph database. 

 



Comparison of Data Models 

Model Structure Use Case Example 

Hierarchical Tree 
Organizational 

chart 
IBM IMS 

Network Graph 
Flight reservation 

system 
IDS 

Relational Tables 
Enterprise 

applications 

MySQL, 

Oracle 

Object-Oriented Objects 
Multimedia or 

CAD applications 
ObjectDB 

ER Model 
Entities and 

Relations 
Database design ER Diagrams 

NoSQL 
Document, Key-

Value 

Big data and 

real-time analytics 

MongoDB, 

Cassandra 



Week 3 
39 



Introduction to Database Design 

 Definition: Database design is the process of 

defining the structure, storage, and organization of 

data in a database to ensure efficiency, scalability, 

and data integrity. 

 Objectives of Database Design: 

 To minimize data redundancy. 

 To ensure data consistency and integrity. 

 To enhance data retrieval and manipulation efficiency. 

 



Introduction to Database 

Design(cont.) 

 Phases of Database Design: 

 Conceptual Design 

 Logical Design 

 Physical Design 

 



Phases of Database Design 

 Conceptual Design 

 Definition: Focuses on high-level representation of the 

data structure using Entity-Relationship (ER) diagrams. 

 Key Components: 

 Entities: Objects or things in the real world (e.g., Customer, 

Product). 

 Attributes: Properties of entities (e.g., Customer Name, 

Product Price). 

 Relationships: Associations between entities (e.g., Customer 

purchases Product). 

 



Phases of Database Design 

 Tools Used: 

 ER Diagrams 

 UML Diagrams 

 Example: An ER diagram representing Customers 

and Orders where a Customer can place multiple 

Orders. 

 



Phases of Database Design 

 Logical Design 

 Definition: Converts the conceptual design into a 

logical model that can be implemented in a 

database management system (DBMS). 

 Steps Involved: 

 Transform entities into tables. 

 Define primary keys for each table. 

 Define relationships using foreign keys. 

 Normalize the database. 



Phases of Database Design 

 Normalization: 

 Process of organizing data to minimize redundancy and 
improve integrity. 

 Normal Forms: 

 First Normal Form (1NF): Eliminate repeating groups; 
ensure atomic values. 

 Second Normal Form (2NF): Eliminate partial 
dependencies; all non-key attributes depend on the whole 
primary key. 

 Third Normal Form (3NF): Eliminate transitive 
dependencies; non-key attributes depend only on the 
primary key. 



Phases of Database Design 

 Physical Design 

 Definition: Focuses on the physical storage and 
performance optimization of the database. 

 Key Considerations: 

 Indexing: Create indexes on frequently queried columns for 
faster data retrieval. 

 Partitioning: Divide large tables into smaller, more 
manageable pieces. 

 Storage Optimization: Ensure efficient use of disk space. 

 Example: 

 Adding an index on the "CustomerID" column to speed up 
searches. 



Steps in Database Design 

 Requirement Analysis 

 Gather and analyze the requirements of the database 
from stakeholders. 

 Understand the data needs, use cases, and constraints. 

 Conceptual Modeling 

 Use ER diagrams to visualize entities, attributes, and 
relationships. 

 Logical Modeling 

 Convert the conceptual model into a relational schema. 

 Normalize the schema to eliminate redundancy. 

 



Steps in Database Design 

 Physical Modeling 

 Define how the data will be stored on the disk. 

 Optimize for performance and storage efficiency. 

 Implementation 

 Use a DBMS to create the database schema and 

populate it with data. 

 Testing and Validation 

 Verify that the database meets requirements and 

performs efficiently. 



Key Principles of Good Database 

Design 

 Simplicity: Keep the design as simple as possible 
while meeting requirements. 

 Scalability: Ensure the database can handle 
growing amounts of data. 

 Integrity: Enforce data integrity through constraints 
and normalization. 

 Flexibility: Design for adaptability to future 
changes. 

 Performance: Optimize for query speed and 
storage efficiency. 

 



Challenges in Database Design 

 Balancing normalization and performance. 

 Handling complex relationships and large datasets. 

 Addressing security and access control requirements. 

 Accommodating changes in requirements. 

 



Tools for Database Design 

 ERD Tools: 

 Lucidchart, draw.io, Microsoft Visio 

 DBMS Tools: 

 MySQL Workbench, Microsoft SQL Server Management 

Studio (SSMS), Oracle SQL Developer 

 Other Tools: 

 dbdiagram.io, DbSchema, Navicat 

 



Week 4 
52 



Relational Algebra and Relational 

Calculus 

Relational Algebra and Relational Calculus are two 

core theoretical concepts in the field of database 

management systems (DBMS). These languages 

provide the foundation for querying and 

manipulating relational databases. While relational 

algebra is a procedural language, relational calculus 

is a non-procedural (or declarative) language. 

Understanding these concepts is crucial for anyone 

studying databases and query languages like SQL 



Relational Algebra 

 Relational Algebra is a procedural query language, 

meaning it describes a sequence of operations that 

need to be performed on the data. The result of 

each operation is a relation (a table), and these 

relations can be further manipulated by other 

operations. 



Basic Operations in Relational Algebra 

1. Select (σ) 

• Description: The Select operation is used to filter 

rows based on a specified condition. It is equivalent 

to the WHERE clause in SQL. 

• Syntax: σ (Condition)(Relation) 

• Example: σ (Age > 30)(Employee) 

• This operation will return all rows from the Employee 

relation where the Age is greater than 30. 

 



Basic Operations in Relational Algebra 

2. Project (π) 

 Description: The Project operation is used to select 

specific columns from a relation. It is similar to the 

SELECT clause in SQL. 

 Syntax: π (Column1, Column2, ...)(Relation) 

 Example: π Name, Age (Employee) 

 This operation will return only the Name and Age 

columns from the Employee relation. 



Basic Operations in Relational Algebra 

3. Union (∪) 

 Description: The Union operation combines the 

results of two relations and returns all distinct rows. 

It is similar to the UNION operator in SQL. 

 Syntax: Relation1 ∪ Relation2 

 Example: Employee ∪ Manager 

 This operation will return a new relation that includes all 

employees and managers, eliminating duplicates. 



Basic Operations in Relational Algebra 

4. Set Difference (−) 

 Description: The Set Difference operation returns 

the rows that are in one relation but not in another. 

It is similar to the EXCEPT operator in SQL. 

 Syntax: Relation1 − Relation2 

 Example: Employee − Manager 

 This operation will return all employees who are not 

managers. 



Basic Operations in Relational Algebra 

5. Cartesian Product (×) 

 Description: The Cartesian Product operation 
combines each row of one relation with each row of 
another relation. It produces a relation with every 
possible combination of rows. 

 Syntax: Relation1 × Relation2 

 Example: Employee × Department 

 This operation will combine each employee with each 
department, resulting in a relation where every 
employee is paired with every department. 



Basic Operations in Relational Algebra 

6. Rename (ρ) 

 Description: The Rename operation changes the 

name of a relation or its attributes. 

 Syntax: ρ (NewRelationName)(Relation) 

 Example: ρ (Employee1)(Employee) 

 This operation renames the relation Employee to 

Employee1. 



Basic Operations in Relational Algebra 

7. Join (⨝) 

 Description: The Join operation combines rows from 
two relations based on a common attribute. It is 
often used to combine data from two related 
tables. 

 Syntax: Relation1 ⨝ Relation2 

 Example: Employee ⨝ Department 

 This operation will join the Employee and Department 
relations based on the common attribute (for instance, 
Dept_ID). 



Basic Operations in Relational Algebra 

(Extended Operations) 

 In addition to the basic operations, relational 

algebra also includes more advanced operations: 

 Natural Join (⨝) 

 Description: A Natural Join is a specific type of join 

where only columns with the same name in both 

relations are used as the basis for joining. 

 Example: Employee ⨝ Department 

 This will automatically join the relations based on common 

attributes like Dept_ID. 



Week 5 
63 



Basic Operations in Relational Algebra 

(Extended Operations) 

 Division (÷) 

 Description: The Division operation is used when we 

need to find tuples in one relation that are related 

to all tuples in another relation. 

 Example: 

 Suppose we have two relations: Employee(Name, Skill) 

and SkillRequired(Skill). 

 The division operation helps to find employees who 

possess all skills listed in the SkillRequired relation. 



Relational Calculus 

 Relational Calculus is a declarative query language 

used to describe what data to retrieve rather than 

how to retrieve it. It defines queries using predicates 

and logical formulas. 

 There are two main types of relational calculus: 

 



Tuple Relational Calculus (TRC) 

 In Tuple Relational Calculus, we specify the desired 
tuples (or rows) of a relation using variables and 
conditions that must be satisfied. It uses tuple variables 
and predicates. 

 Syntax: {t | P(t)} 

 t is a tuple variable (a row in the relation), and P(t) is the 
predicate that the tuple must satisfy. 

 Example: {t.Name | ∃e (Employee(e) ∧ e.Age > 30 ∧ 
e.Name = t.Name)} 

 This query finds the names of employees whose age is 
greater than 30. 

 



Domain Relational Calculus (DRC) 

 In Domain Relational Calculus, we deal with domain 
variables rather than tuples. Each domain variable 
represents an individual attribute value. 

 Syntax: {<x1, x2, ..., xn> | P(x1, x2, ..., xn)} 

 x1, x2, ..., xn are domain variables, and P(x1, x2, ..., 
xn) is the predicate. 

 Example: {<Name> | ∃Age (Employee(Name, 
Age) ∧ Age > 30)} 

 This query retrieves the names of employees whose age 
is greater than 30. 

 



Key Differences between TRC and DRC 

 TRC uses tuples as variables, while DRC uses 

domain variables (attribute values). 

 TRC is more expressive and intuitive in some cases 

because it works directly with tuples. 

 DRC is often simpler when dealing with specific 

attributes, as it treats each attribute separately. 

 



Relational Algebra vs. Relational 

Calculus 

 Procedural vs. Declarative: Relational Algebra tells us 
how to get the result, whereas Relational Calculus tells 
us what the result should be, leaving the how to the 
DBMS. 

 Execution: While relational algebra is more procedural 
and closely related to how queries are processed in a 
DBMS, relational calculus is more about expressing the 
logic of what is needed from the database. 

 Application: SQL is closely based on relational 
algebra, but many features of SQL (such as subqueries) 
are more closely related to relational calculus. 



Practical Applications and SQL 

 Both relational algebra and relational calculus 

serve as the foundation for SQL. SQL queries are 

generally equivalent to relational algebra 

expressions. However, SQL also incorporates 

additional features that go beyond pure relational 

algebra or relational calculus, such as aggregation 

(e.g., COUNT, SUM), ordering, and nested queries. 



Practical Applications and SQL 

 For example: 

 A query like SELECT Name, Age FROM Employee 

WHERE Age > 30 is based on the relational 

algebra expression π Name, Age (σ Age > 30 

(Employee)). 

 A subquery like SELECT Name FROM Employee 

WHERE Age > (SELECT AVG(Age) FROM Employee) 

is based on relational calculus. 



Week 6 
72 



Basic SQL (Structured Query 

Language) 

 SQL (Structured Query Language) is the standard 

language used for managing and manipulating 

relational databases. It provides a powerful and 

easy-to-understand syntax for querying, inserting, 

updating, and deleting data. SQL is the foundation 

for working with relational database management 

systems (RDBMS) like MySQL, PostgreSQL, SQL 

Server, and Oracle. 



SQL Basics 

 SQL operates on a set of relational tables (or 

relations) and uses queries to perform various 

operations like data retrieval, updates, and table 

management. SQL is divided into different 

categories based on the operations being 

performed. 



Why SQL? 

 Data Management: Efficiently organize and manage large 
datasets. 

 Querying Data: Retrieve specific data from massive 
databases. 

 Data Analysis: Perform aggregations, filtering, and data 
transformations. 

 Interoperability: Works with all relational database systems 
(MySQL, PostgreSQL, SQLite, etc.). 

 Portability: SQL can run across different platforms with 
minimal changes. 

 Standardization: SQL is governed by standards, ensuring 
consistency. 

 



Categories of SQL Commands 

 Data Definition Language (DDL): Used to define and modify 
database structures. 

 Examples: CREATE, ALTER, DROP 

 Data Manipulation Language (DML): Used to manipulate data 
within tables. 

 Examples: INSERT, UPDATE, DELETE 

 Data Query Language (DQL): Used to query and retrieve data. 

 Example: SELECT 

 Data Control Language (DCL): Used to manage access and 
permissions. 

 Examples: GRANT, REVOKE 

 Transaction Control Language (TCL): Used to manage database 
transactions. 

 Examples: COMMIT, ROLLBACK, SAVEPOINT 

 

 



Basic SQL Commands 

 Data Query Language (DQL) 

 The most common and essential SQL command for 

querying data is SELECT. 

 SELECT: Retrieves data from one or more tables in 

the database. 

 Syntax: 

 SELECT column1, column2, ... FROM table_name WHERE condition; 

 



Basic SQL Commands 

 Example: 

 

 SELECT Name, Age FROM Employee WHERE Age > 

30;  

 

This query retrieves the Name and Age columns from 

the Employee table for all employees who are older 

than 30. 



Basic SQL Commands 

 Selecting All Columns: 

 

 SELECT * FROM Employee; 

 This query selects all columns (*) from the Employee 

table. 



Basic SQL Commands 

 DISTINCT: Removes duplicate records from the 

result. 

 Example: 

 

 SELECT DISTINCT Age FROM Employee; 

 

 This query returns all distinct ages from the 

Employee table, eliminating duplicates. 



Basic SQL Commands 

 ORDER BY: Sorts the result set in ascending or 

descending order. 

 Syntax: 

 SELECT column1, column2, ... FROM table_name 

ORDER BY column_name ASC|DESC; 



Basic SQL Commands 

 ORDER BY: Sorts the result set in ascending or 
descending order. 

 

 Example: 

 SELECT Name, Age FROM Employee ORDER BY Age 
DESC; 

 

 This query sorts employees by age in descending 
order. 



Basic SQL Commands 

 LIMIT / OFFSET: Limits the number of rows returned 

by a query (useful for pagination). 

 

 Syntax: 

 SELECT column1, column2 FROM table_name LIMIT 

number_of_rows; 

 

 



Basic SQL Commands 

 LIMIT / OFFSET: Limits the number of rows returned 

by a query (useful for pagination). 

Example: 

SELECT Name FROM Employee LIMIT 5; 

 

This query retrieves the first 5 employee names. 

 



Basic SQL Commands 

 Data Definition Language (DDL). 

 DDL is used to define and modify database structures. 

 CREATE TABLE: Creates a new table in the database. 

 Syntax: 

 

 CREATE TABLE table_name ( 

     column1 datatype, 

     column2 datatype, 

     ... 

 ); 

 



Basic SQL Commands 

 Data Definition Language (DDL). 

 Example: 

 CREATE TABLE Employee ( 

     EmployeeID INT PRIMARY KEY, 

     Name VARCHAR(100), 

     Age INT, 

     Department VARCHAR(50) 

 ); 

 This query creates a new table named Employee with 
columns for EmployeeID, Name, Age, and Department. 

 

 



Basic SQL Commands 

 ALTER TABLE: Modifies an existing table (e.g., add, 

drop, or modify columns). 

 Syntax: 

 ALTER TABLE table_name ADD column_name 

datatype; 

 ALTER TABLE table_name DROP COLUMN 

column_name; 

 



Basic SQL Commands 

 Example: 

 

 ALTER TABLE Employee ADD Salary DECIMAL(10, 

2); 

 This query adds a Salary column to the Employee 

table. 



Basic SQL Commands 

 DROP TABLE: Deletes a table from the database. 

 Syntax: 

 

 DROP TABLE table_name; 

 



Week 7 
90 



Basic SQL Commands 

 Example: 

 

 DROP TABLE Employee; 

 

 This query deletes the Employee table from the 

database. 

 



Basic SQL Commands 

 Data Manipulation Language (DML) 

 DML commands allow you to manipulate the data in 

the database. 

 INSERT INTO: Adds new rows of data into a table. 

 Syntax: 

 INSERT INTO table_name (column1, column2, ...) 

VALUES (value1, value2, ...); 

 



Basic SQL Commands 

 Example: 

 

 INSERT INTO Employee (EmployeeID, Name, Age, 

Department) VALUES (1, 'John Doe', 28, 'HR'); 

 This query inserts a new employee record into the 

Employee table. 



Basic SQL Commands 

 UPDATE: Modifies existing rows of data in a table. 

 Syntax: 

 

 UPDATE table_name SET column1 = value1, 

column2 = value2, ... WHERE condition; 

 



Basic SQL Commands 

 Example: 

 

 UPDATE Employee SET Age = 29 WHERE 

EmployeeID = 1; 

 This query updates the age of the employee with 

EmployeeID 1. 



Basic SQL Commands 

 DELETE: Removes rows of data from a table. 

 Syntax: 

 

 DELETE FROM table_name WHERE condition; 

 



Basic SQL Commands 

 Example: 

 

DELETE FROM Employee WHERE Age < 30; 

This query deletes all employees under the age of 30 

from the Employee table. 



Basic SQL Commands 

 Data Control Language (DCL) 

 

 DCL is used to control access to data in the 

database. 

 GRANT: Gives users or roles permission to perform 

actions on database objects (e.g., tables, views). 

 Syntax: 

GRANT privilege ON object TO user; 

 



Basic SQL Commands 

 Example: GRANT SELECT ON Employee TO user1; 

 REVOKE: Removes previously granted permissions 

from a user or role. 

 Syntax: 

 REVOKE privilege ON object FROM user; 

 



Basic SQL Commands 

 Example: REVOKE SELECT ON Employee FROM 

user1; 

 



Week 8 
101 



Joins in SQL 

 Example: REVOKE SELECT ON Employee FROM user1; 

 SQL joins allow you to combine rows from two or more 

tables based on a related column between them. Joins 

are essential for querying multiple related tables. 

 INNER JOIN: Returns only the rows where there is a 

match in both tables. 

 Syntax: 

SELECT columns FROM table1 INNER JOIN table2 ON table1.column = 

table2.column; 

 



Joins in SQL 

 Example:  

 

SELECT Employee.Name, Department.Name 

FROM Employee 

INNER JOIN Department 

ON Employee.Department = 

Department.DepartmentID; 

 



Joins in SQL 

 LEFT JOIN (OUTER JOIN): Returns all rows from the 

left table and matching rows from the right table. If 

there is no match, NULL values are returned for 

columns from the right table. 

 Syntax: 

SELECT columns FROM table1 LEFT JOIN table2 ON 

table1.column = table2.column; 

 



Joins in SQL 

 Example: 

 

SELECT Employee.Name, Department.Name 

FROM Employee 

LEFT JOIN Department 

ON Employee.Department = 

Department.DepartmentID; 

 



Joins in SQL 

 RIGHT JOIN (OUTER JOIN): Returns all rows from 

the right table and matching rows from the left 

table. If there is no match, NULL values are returned 

for columns from the left table. 

 Syntax: 

SELECT columns FROM table1 RIGHT JOIN table2 ON 

table1.column = table2.column; 

 



Joins in SQL 

 FULL OUTER JOIN: Returns all rows when there is a 

match in one of the tables. 

 

 Syntax: 

SELECT columns FROM table1 FULL OUTER JOIN table2 

ON table1.column = table2.column; 

 



SQL Functions 

 SQL provides several built-in functions to perform 

operations on data. 

 Aggregate Functions: 

 COUNT(): Counts the number of rows. 

 SUM(): Calculates the sum of a numeric column. 

 AVG(): Calculates the average of a numeric column. 

 MAX(): Returns the maximum value. 

 MIN(): Returns the minimum value. 



SQL Functions 

 Example: 

 

 SELECT AVG(Age) FROM Employee; 

 String Functions: 

 CONCAT(): Concatenates two or more strings. 

 UPPER(): Converts a string to uppercase. 

 LOWER(): Converts a string to lowercase. 

 



SQL Functions 

 Example: 

 

 SELECT CONCAT(FirstName, ' ', LastName) AS 

FullName FROM Employee; 

 



Subqueries 

 Subqueries are queries nested inside another SQL 

query. They are used to perform operations that 

depend on results from another query. 

 



Subqueries 

 Types of Subqueries 

 Scalar Subquery: Returns a single value. 

 Example: 

 

SELECT Name, Age 

FROM Employee 

WHERE Age > (SELECT AVG(Age) FROM Employee); 

Retrieves employees older than the average age. 



Subqueries 

 Correlated Subquery: Depends on the outer query 

for its execution. 

 Example: 

SELECT e.Name 

FROM Employee e 

WHERE e.Salary > (SELECT AVG(Salary) FROM Employee 

WHERE DepartmentID = e.DepartmentID); 

Retrieves employees earning above the average 

salary in their department. 



Subqueries 

 EXISTS Subquery: Checks for the existence of rows. 

 Example: 

SELECT Name 

FROM Employee e 

WHERE EXISTS (SELECT 1 FROM Department d WHERE 

e.DepartmentID = d.DepartmentID); 

 



Window Functions 

Window functions perform calculations across a set of 
rows related to the current row. They do not reduce 
the number of rows returned. 

 Common Window Functions 

 ROW_NUMBER(): Assigns a unique number to each 
row. 

 

SELECT Name, Salary, ROW_NUMBER() OVER (ORDER BY 
Salary DESC) AS Rank 

FROM Employee; 

 



Window Functions 

 RANK(): Assigns a rank to each row with tied 

values having the same rank. 

 Example: 

SELECT Name, Salary, RANK() OVER (ORDER BY Salary DESC) 

AS Rank 

FROM Employee; 

 



Window Functions 

 PARTITION BY: Divides the result set into partitions 

to apply the function to each partition. 

 Example: 

SELECT Name, DepartmentID, Salary, AVG(Salary) OVER 

(PARTITION BY DepartmentID) AS AvgSalary 

FROM Employee; 

 



Transactions 

 Transactions ensure that a sequence of SQL 

operations is executed as a single unit. Transactions 

help maintain data integrity. 

 START TRANSACTION: Begins a new transaction. 

 COMMIT: Saves all changes made in the 

transaction. 

 ROLLBACK: Reverts changes made during the 

transaction. 

 



Transactions 

 Example: 

START TRANSACTION; 

 

UPDATE Employee SET Salary = Salary * 1.1 WHERE DepartmentID = 
1; 

 

IF (SELECT SUM(Salary) FROM Employee WHERE DepartmentID = 1) 
> 100000 THEN 

    ROLLBACK; 

ELSE 

    COMMIT; 

END IF; 

 



Common Table Expressions (CTEs) 

 CTEs provide a way to simplify complex queries by 

creating temporary result sets. 

 Syntax: 
WITH CTEName AS ( 

    SELECT column1, column2 

    FROM table 

    WHERE condition 

) 

SELECT * FROM CTEName WHERE another_condition; 

 



Common Table Expressions (CTEs) 

 Example:  

WITH DepartmentSalary AS ( 

    SELECT DepartmentID, AVG(Salary) AS AvgSalary 

    FROM Employee 

    GROUP BY DepartmentID 

) 

SELECT e.Name, e.Salary, d.AvgSalary 

FROM Employee e 

JOIN DepartmentSalary d ON e.DepartmentID = d.DepartmentID 

WHERE e.Salary > d.AvgSalary; 

 



Advanced SQL Use Cases 

 Pivot Tables: 

 Transform rows into columns. 

 Example: 

SELECT DepartmentID, 

       SUM(CASE WHEN Gender = 'Male' THEN 1 ELSE 0 END) 
AS MaleCount, 

       SUM(CASE WHEN Gender = 'Female' THEN 1 ELSE 0 END) 
AS FemaleCount 

FROM Employee 

GROUP BY DepartmentID; 

 



Advanced SQL Use Cases 

 Recursive Queries: 

 Example:  
WITH RECURSIVE EmployeeHierarchy AS ( 

    SELECT EmployeeID, ManagerID, Name 

    FROM Employee 

    WHERE ManagerID IS NULL 

    UNION ALL 

    SELECT e.EmployeeID, e.ManagerID, e.Name 

    FROM Employee e 

    JOIN EmployeeHierarchy eh ON e.ManagerID = eh.EmployeeID 

) 

SELECT * FROM EmployeeHierarchy; 

 



Week 9 
124 



Constraints in DBMS 

 Constraints are predefined rules enforced on data 

in database tables to maintain the integrity, 

validity, and consistency of the data. Constraints 

restrict the type of data that can be entered into a 

table. 



Constraints in DBMS 

Types of Constraints: 

 NOT NULL Constraint 

Ensures that a column cannot have NULL values, i.e., every 
row must have a value for this column. 

Used when a field is mandatory. 

 Syntax 

CREATE TABLE Employee ( 

    EmployeeID INT, 

    Name VARCHAR(50) NOT NULL 

); 

 



Constraints in DBMS 

 Example:A Name column in an Employee table must 

always have a value. 



Constraints in DBMS 

 UNIQUE Constraint 

 Ensures all values in a column or a combination of columns 
are unique. 

 Allows NULL values (but only one per column). 

 Syntax: 

CREATE TABLE Employee ( 

    EmployeeID INT UNIQUE, 

    Name VARCHAR(50) 

); 

 Example:Employee ID must be unique to identify each 
employee. 

 



Constraints in DBMS 

 PRIMARY KEY Constraint: 

 Combines NOT NULL and UNIQUE. 

 Uniquely identifies each record in the table. 

 A table can only have one PRIMARY KEY. 

 Syntax: 

CREATE TABLE Employee ( 

    EmployeeID INT PRIMARY KEY, 

    Name VARCHAR(50) 

); 

 



Constraints in DBMS 

 PRIMARY KEY Constraint: 

 Composite Primary Key 

 

 A primary key can consist of multiple columns. 

 

Example: 

CREATE TABLE Enrollment ( 

    StudentID INT, 

    CourseID INT, 

    PRIMARY KEY (StudentID, CourseID) 

); 

 



Constraints in DBMS 

 FOREIGN KEY Constraint: 

 Enforces referential integrity by linking columns in 

two tables. 

 Ensures that the value in a column matches a value 

in another table. 



Constraints in DBMS 

 FOREIGN KEY Constraint: 

 Syntax: 
CREATE TABLE Department ( 

    DepartmentID INT PRIMARY KEY, 

    DepartmentName VARCHAR(50) 

); 

 

CREATE TABLE Employee ( 

    EmployeeID INT PRIMARY KEY, 

    Name VARCHAR(50), 

    DepartmentID INT, 

    FOREIGN KEY (DepartmentID) REFERENCES 
Department(DepartmentID) 

); 

 



Constraints in DBMS 

 CHECK Constraint: 

 Ensures that all values in a column meet a specific 
condition. 

 Syntax: 
CREATE TABLE Employee ( 

    EmployeeID INT PRIMARY KEY, 

    Name VARCHAR(50), 

    Age INT CHECK (Age > 18) 

); 

 Example: Employees must be older than 18. 

 



Constraints in DBMS 

 DEFAULT Constraint: 

 Provides a default value for a column if no value is 
provided during insertion. 

 Syntax: 
CREATE TABLE Employee ( 

    EmployeeID INT PRIMARY KEY, 

    Name VARCHAR(50), 

    Status VARCHAR(20) DEFAULT 'Active' 

); 

 Example: New employees have a default status of 
"Active". 

 



Constraints in DBMS 

 Constraints on Table Creation 

 Constraints can also be added to a table after its 

creation: 

 Syntax: 

ALTER TABLE Employee 

ADD CONSTRAINT Unique_Name UNIQUE (Name); 

 



Constraints in DBMS 

 Benefits of Constraints: 

 Data Integrity: Ensures only valid data is entered into the 

database. 

 Consistency: Enforces uniformity across data entries. 

 Error Prevention: Prevents invalid data modifications or 

deletions. 

 Reduces Code Complexity: Handles data validation at the 

database level. 



Week 10 
137 



Views in DBMS 

 A view is a virtual table based on the result of a 

query. It does not store data itself but retrieves 

data from one or more base tables. 

 



Views in DBMS 

 Characteristics of Views 

 Logical Representation: Views are used to represent 

subsets of data logically. 

 No Data Storage: Views do not store data 

themselves. 

 Dynamic: Always reflect the latest data in the 

underlying tables. 

 Read and Write Access: Depending on the database, 

views may allow updates. 



Views in DBMS 

 Creating a View: 

 Syntax: 

CREATE VIEW view_name AS 

SELECT column1, column2 

FROM table_name 

WHERE condition; 

 Example: 

 



Views in DBMS 

Example 

CREATE VIEW ActiveEmployees AS 

SELECT EmployeeID, Name, Status 

FROM Employee 

WHERE Status = 'Active'; 



Views in DBMS 

Querying a View: 

Views can be queried like tables. 
 

SELECT * FROM ActiveEmployees; 

 

Updating Data Through Views 

 Views allow data updates if: 
 They are created from a single table. 

 Do not involve aggregate functions or GROUP BY. 

 Do not involve complex joins. 

 

 



Views in DBMS 

Example: 

UPDATE ActiveEmployees 

SET Status = 'Inactive' 

WHERE EmployeeID = 1; 

 

Syntax: 

DROP VIEW view_name; 

Example: 

DROP VIEW ActiveEmployees; 

 

 



Views in DBMS 

Materialized Views: 

 Unlike regular views, materialized views store query 
results physically on disk. 

 They are useful for performance optimization when 
dealing with large datasets. 

 

 Syntax: 
 CREATE MATERIALIZED VIEW materialized_view_name AS 

 SELECT column1, column2 

 FROM table_name; 

 



Views in DBMS 

Advantages of Views: 

 Data Security: 

 Restrict access to specific rows or columns. 

 Example 

CREATE VIEW ManagerView AS 

SELECT EmployeeID, Name 

FROM Employee 

WHERE Role = 'Manager'; 

 

 



Views in DBMS 

 Simplification: 

 Encapsulate complex queries. 

 Example: 
CREATE VIEW EmployeeStats AS 

SELECT DepartmentID, COUNT(*) AS TotalEmployees 

FROM Employee 

GROUP BY DepartmentID; 

 Logical Independence: 
 Abstract underlying table structure from users. 

 Data Consistency: 
 Provide a consistent view of the database. 

 



Views in DBMS 

Aspect Constraints Views 

Purpose 

Ensure data validity and 

integrity during 

insert/update. 

Simplify data retrieval and 

restrict access. 

Data Storage 
Exist as part of table 

metadata. 

Virtual tables; may store 

data (materialized views). 

Scope 

Prevent invalid data from 

being entered into the 

table. 

Provide customized data 

representations for queries. 

Examples 
NOT NULL, CHECK, 

FOREIGN KEY. 

Filtered views, 

aggregations, or specific 

columns from multiple tables. 

Constraints vs. Views 
 



Views in DBMS 

 Simplification: 

 Encapsulate complex queries. 

 Example: 
CREATE VIEW EmployeeStats AS 

SELECT DepartmentID, COUNT(*) AS TotalEmployees 

FROM Employee 

GROUP BY DepartmentID; 

 Logical Independence: 
 Abstract underlying table structure from users. 

 Data Consistency: 
 Provide a consistent view of the database. 

 



Views in DBMS 

 Practical Examples: 

 Example: Constraints 

CREATE TABLE Product ( 

    ProductID INT PRIMARY KEY, 

    ProductName VARCHAR(50) NOT NULL, 

    Price DECIMAL(10, 2) CHECK (Price > 0), 

    CategoryID INT, 

    FOREIGN KEY (CategoryID) REFERENCES 

Category(CategoryID) 

); 

 



Views in DBMS 

 Example: View 

 

CREATE VIEW ExpensiveProducts AS 

SELECT ProductID, ProductName, Price 

FROM Product 

WHERE Price > 1000; 

 



Week 11 
151 



Indexing and Hashing in DBMS 

 Indexing and hashing are techniques used in 

database management systems (DBMS) to optimize 

the performance of data retrieval. They help to 

reduce the time complexity of query execution by 

minimizing the number of disk I/O operations 

required to locate data. 



Indexing and Hashing in DBMS 

 Indexing in DBMS: 

 Indexing is a data structure technique used to 

efficiently retrieve records from a database table. 

It creates an auxiliary structure that provides quick 

access to specific data rows based on a key. 



Indexing and Hashing in DBMS 

 What is an Index? 

 

 An index is like a roadmap that allows the DBMS to 
locate rows in a table more efficiently, without 
scanning the entire table. 

 It is typically implemented as a separate data 
structure (e.g., B-tree, hash table) that stores key-
value pairs, where the key corresponds to the 
indexed column(s) and the value is the physical 
address of the data in the table. 



Indexing and Hashing in DBMS 

 Types of Indexes 

 Primary Index: 

Built on a primary key, which uniquely identifies each row 

in the table. 

The table is sorted based on the primary key. 

 Example: If a table has a StudentID as the primary 

key, the primary index will organize the data by 

StudentID. 

 



Indexing and Hashing in DBMS 

 Secondary Index: 

 Built on non-primary attributes, which may not be 

unique. 

 Allows quick access based on non-primary columns. 

 Example: Creating an index on the Name column 

for faster retrieval of students by name. 



Indexing and Hashing in DBMS 

 Clustered Index: 

 Organizes the table data to match the order of the 

index. 

 Only one clustered index can exist per table 

because the data can only be physically sorted in 

one order. 

 Example: A clustered index on EmployeeID ensures 

the data rows in the table are sorted by 

EmployeeID. 



Indexing and Hashing in DBMS 

 Non-clustered Index: 

 Does not affect the order of the data in the table. 

 Stores pointers to the actual data rows. 

 Multiple non-clustered indexes can exist on a single 

table. 

 Example: A non-clustered index on Name in an 

employee table. 



Index Structures 

 Single-level Index: 

 A simple, one-level index structure where the index 

entries directly point to the table rows. 

 Types: 

 Dense Index: Every table record has a corresponding 

index entry. 

 Sparse Index: Only some records have index entries 

(e.g., the first record of every block). 



Index Structures 

 Multi-level Index: 

 An index on the index itself, reducing the size of the 

index structure at each level. 

 Useful for large tables with a vast amount of data. 



Index Structures 

 B-Tree Index: 

 A balanced tree structure where nodes contain keys 

and pointers to child nodes or data. 

 Ensures logarithmic time complexity for search, 

insert, and delete operations. 

 Widely used due to its ability to handle large 

datasets efficiently. 



Index Structures 

 B+ Tree Index: 

 A variation of B-tree where all data pointers are 

stored only at the leaf level. 

 Offers sequential access to data and is commonly used 

in DBMS. 



Advantages of Indexing 

 Faster Data Retrieval: Reduces the time complexity 

of queries by providing direct access to data. 

 Efficient Sorting: Enables quick sorting of rows 

based on indexed columns. 

 Reduces Disk I/O: Limits the number of disk blocks 

accessed during a query. 



Disadvantages of Indexing 

 Storage Overhead: Requires additional storage for 

maintaining index structures. 

 Maintenance Overhead: Updates, inserts, and 

deletes require index modification, which can slow 

down operations. 



Week 12 
165 



Hashing in DBMS 

 Hashing is a technique used to map data to a 

fixed-size address space using a hash function. It is 

commonly used in situations where data retrieval is 

required in constant or near-constant time. 



Hashing in DBMS 

 What is Hashing? 

 Hash Function: A mathematical function that 

converts input data into a fixed-size hash code or 

hash value. 

 The hash value is used as an address to locate the 

data in a hash table. 

 Example: If a StudentID is hashed to the value 5, 

the corresponding student record is stored at index 

5 in the hash table. 



Hashing in DBMS 

 Types of Hashing: 

 Static Hashing: 

 The hash table size is fixed, and the hash function maps 
data into a fixed set of buckets. 

 Advantages: 

 Simple to implement. 

 Works well for databases with a fixed amount of data. 

 Disadvantages: 

 Performance degrades as the table becomes full. 

 Poor handling of dynamic datasets. 

 



Hashing in DBMS 

 Types of Hashing: 

 Dynamic Hashing: 

 The hash table grows or shrinks dynamically as the 

dataset changes. 

 Techniques: 

 Extendible Hashing: Uses a directory that grows 

dynamically as more data is added. Buckets can split when 

they overflow. 

 Linear Hashing: Buckets are split in a predefined sequence, 

eliminating the need for a directory. 

 

 



Hashing in DBMS 

 Hashing Techniques 

 Division Method: 

 The hash value is computed as h(k) = k % n, where k is the 

key and n is the number of buckets. 

 Example: For a key 101 and n = 10, the hash value is 101 

% 10 = 1. 



Hashing in DBMS 

 Hashing Techniques 

 Multiplication Method: 

 The hash value is computed as h(k) = floor(n * (k * A % 

1)), where A is a constant. 

 Reduces the likelihood of collisions compared to the 

division method. 

 Universal Hashing: 

 Uses a randomized hash function to minimize the chance 

of collisions. 

 



Hashing in DBMS 

 Collision Resolution in Hashing 

 When two keys hash to the same bucket, a collision 

occurs. Several methods are used to handle collisions: 

 Chaining: 

 Each bucket points to a linked list of entries that hash to the 

same bucket. 

 Example 

         Bucket 0: Key1 -> Key2 

 



Hashing in DBMS 

 Collision Resolution in Hashing 

 Open Addressing: 

 All data is stored within the hash table itself, and 
collisions are resolved by probing (searching) for 
the next available slot. 

 Techniques: 

 Linear Probing: Search sequentially for the next 
empty slot. 

 Quadratic Probing: Search using a quadratic 
formula (e.g., 1², 2²). 

 Double Hashing: Use a second hash function to 
determine the step size for probing. 

 



Hashing in DBMS 

 Advantages of Hashing 

 Constant-Time Access: Offers O(1) average time 

complexity for data retrieval. 

 Dynamic Data Handling: Suitable for dynamic 

datasets when using dynamic hashing techniques. 

 Disadvantages of Hashing 

 Collisions: Handling collisions can add complexity 

and overhead. 

 Storage Overhead: Requires additional space for 

the hash table and collision resolution structures. 

 



Aspect Indexing Hashing 

Purpose 
Optimizes range and point 

queries. 
Optimizes point queries. 

Structure 
Tree-based (e.g., B-tree, B+ 

tree). 

Hash-based (e.g., hash 

table). 

Performance Efficient for range queries. 
Not suitable for range 

queries. 

Collision Handling Not applicable. 
Requires collision 

resolution techniques. 

Use Case 
Querying large datasets 

with range conditions. 

Exact match queries in 

large datasets. 

Indexing vs. Hashing 
 



Practical Applications 

 Indexing: 

 Used for optimizing SQL queries. 

 Improves performance of range queries (e.g., SELECT * 

FROM Employee WHERE Age BETWEEN 25 AND 30). 

 Commonly implemented as B+ trees in RDBMS. 

 Hashing: 

 Used for in-memory data structures like hash maps. 

 Optimizes equality-based queries (e.g., SELECT * 

FROM Employee WHERE EmployeeID = 123). 



Week 13 
177 



Transaction Management and 

Concurrency Control 

 Transaction management and concurrency control 

are crucial components of a Database Management 

System (DBMS) to ensure data consistency, integrity, 

and availability in multi-user environments. 



Transaction Management and 

Concurrency Control 

 Transactions in DBMS: 

 What is a Transaction? 

 A transaction is a sequence of one or more database 

operations (such as insert, update, delete, or retrieve) 

executed as a single logical unit of work. 

 A transaction must maintain the ACID properties to 

ensure data integrity. 

 



Transaction Management and 

Concurrency Control 

 ACID Properties 

 Atomicity: 

 Ensures that a transaction is executed completely or not at 
all. 

 If a transaction fails, all changes made during the 
transaction are rolled back. 

 Example: Transferring money from one bank account to 
another must either complete fully or not occur at all. 

 Consistency: 

 Ensures that the database transitions from one valid state to 
another after a transaction. 

 Example: The total balance in all accounts should remain 
unchanged after a transaction. 

 



Transaction Management and 

Concurrency Control 

 ACID Properties 

 Isolation: 

 Ensures that concurrently executing transactions do not 
interfere with each other. 

 Example: Two users withdrawing money from the same 
account simultaneously should not result in an inconsistent 
state. 

 Durability: 

 Ensures that once a transaction is committed, its changes 
are permanently recorded in the database, even in the 
case of system failure. 

 Example: Once money is transferred between accounts, 
the changes must persist even if the system crashes. 

 



Transaction Management and 

Concurrency Control 

 States of a Transaction: 

 Active: The transaction is being executed. 

 Partially Committed: All operations are completed, but 

the changes are not yet saved to the database. 

 Committed: The transaction has completed successfully, 

and the changes are saved. 

 Failed: An error occurred, and the transaction cannot 

proceed. 

 Aborted: The transaction is rolled back, undoing all 

changes made during its execution. 

 



Transaction Management and 

Concurrency Control 

 Concurrency in DBMS: 

 Concurrency control is the process of managing 

simultaneous transaction execution in a multi-user 

environment while ensuring consistency and isolation. 



Transaction Management and 

Concurrency Control 

 Problems in Concurrency 

 Lost Update Problem: 

 Occurs when two transactions update the same data 

item, and one update overwrites the other. 

 Example: 

 Transaction T1 reads a value X = 100 and increments it by 

10. 

 Transaction T2 reads the same X and decrements it by 5. 

 The final value of X should be 105, but it may incorrectly 

become 95 or 110. 



Transaction Management and 

Concurrency Control 

 Problems in Concurrency 

 Dirty Read Problem: 

 Occurs when a transaction reads uncommitted 
changes made by another transaction. 

 Example: T1 updates a value, and T2 reads the 
updated value before T1 commits. If T1 rolls back, 
T2 has used invalid data. 

 Non-repeatable Read: 

 Occurs when a transaction reads the same data 
item multiple times and gets different results. 

 Example: T1 reads a value, T2 modifies it, and T1 
reads it again. 

 



Transaction Management and 

Concurrency Control 

 Problems in Concurrency 

 Phantom Read: 

 Occurs when a transaction retrieves a set of rows, and 

another transaction inserts or deletes rows, causing 

changes in subsequent reads. 

 Example: T1 reads a list of accounts, T2 adds a new 

account, and T1 re-reads the list, finding an extra 

account. 

 



Transaction Management and 

Concurrency Control 

 Concurrency Control Techniques: 

 Lock-Based Protocols 

 Locks prevent multiple transactions from accessing 

the same data item simultaneously. 

 Types of Locks: 

 Shared Lock (S): Allows read access but prevents write 

access. 

 Exclusive Lock (X): Allows write access and prevents 

both read and write access by other transactions. 

 



Transaction Management and 

Concurrency Control 
 Concurrency Control Techniques: 

 Two-Phase Locking (2PL): 

 Divides the execution of a transaction into two phases: 

 Growing Phase: Locks are acquired, but no locks are released. 

 Shrinking Phase: Locks are released, but no new locks are 
acquired. 

 Guarantees serializability but can lead to deadlocks. 

 

 Deadlock Handling: 

 Detection and Recovery: Detect deadlocks and abort one 
or more transactions. 

 Prevention: Ensure that transactions do not enter a 
deadlock state by acquiring all necessary locks in advance. 

 



Transaction Management and 

Concurrency Control 

 Timestamp-Based Protocols: 

 Transactions are assigned timestamps at the start. 

 Transactions are executed in the order of their 

timestamps. 

 Rules: 

 If a transaction tries to access a data item and its 

timestamp is older than the data's last modified 

timestamp, the transaction is aborted. 

 Ensures serializability without locks. 

 



Transaction Management and 

Concurrency Control 

 Multiversion Concurrency Control (MVCC): 

 Maintains multiple versions of data items to allow 

concurrent read and write operations. 

 Transactions read the version of the data item that 

was committed at the start of the transaction. 

 Used in modern databases like PostgreSQL and 

MySQL. 

 



Transaction Management and 

Concurrency Control 

 Optimistic Concurrency Control: 

Assumes that conflicts are rare. 

Transactions execute without restrictions, 

and conflicts are checked at the commit 

stage. 

If a conflict is detected, one transaction is 

rolled back. 



Transaction Management and 

Concurrency Control 

 Transaction Recovery: 

 Transaction recovery ensures that the database 
remains consistent in the case of system failures. 

 Types of Failures 

 Transaction Failure: Caused by logical errors 
(e.g., division by zero) or system errors (e.g., 
deadlocks). 

 System Failure: Caused by hardware or software 
crashes. 

 Media Failure: Caused by physical damage to 
storage media. 

 



Transaction Management and 

Concurrency Control 
 Recovery Techniques: 

 Undo Logging: 

 Records old values of data items before they are modified. 

 Rollback can restore the original values in case of failure. 

 Redo Logging: 

 Records new values of data items after they are modified. 

 Replay can apply the changes after a crash. 

 Undo-Redo Logging: 

 Combines undo and redo logging to handle failures at any stage. 

 Checkpointing: 

 Periodically saves the current state of the database to reduce 
recovery time. 

 



Transaction Management and 

Concurrency Control 

 Isolation Levels in SQL: 

 DBMSs provide different isolation levels to 

balance concurrency and consistency. 

 Read Uncommitted: 

 Transactions can read uncommitted data. 

 May cause dirty reads. 

 Read Committed: 

 Transactions cannot read uncommitted data. 

 Prevents dirty reads but allows non-repeatable reads. 

 



Transaction Management and 

Concurrency Control 

 Isolation Levels in SQL: 

 Repeatable Read: 

 Ensures that data read by a transaction remains 

consistent during its execution. 

 Prevents dirty and non-repeatable reads but allows 

phantom reads. 

 Serializable: 

 Ensures complete isolation between transactions. 

 Prevents dirty reads, non-repeatable reads, and 

phantom reads. 

 Most restrictive isolation level. 

 



Transaction Management and 

Concurrency Control 

 Practical Applications: 

 Banking Systems: Ensure atomic money transfers 

and prevent concurrency issues. 

 E-commerce: Handle multiple users accessing the 

same inventory simultaneously. 

 Reservation Systems: Prevent overbooking by 

managing simultaneous bookings. 

 



Week 14 
197 



NoSQL Databases 

 NoSQL (Not Only SQL) databases are designed to 

handle large volumes of unstructured, semi-

structured, or structured data. Unlike traditional 

relational databases, NoSQL databases offer 

flexible schemas, scalability, and high performance, 

making them ideal for modern applications. 



What is NoSQL? 

 A class of databases that provides mechanisms for 

storage and retrieval of data beyond the 

traditional table structures of relational databases. 

 Built for distributed data stores, NoSQL databases 

can handle big data and real-time web 

applications. 



Characteristics of NoSQL 

 Schema Flexibility:No fixed schema; data can 

evolve dynamically. 

 Suitable for handling unstructured and semi-

structured data. 

 Scalability:Horizontal scaling (adding more servers) 

instead of vertical scaling (upgrading server 

capacity). 



Characteristics of NoSQL 

 High Availability: 

 Ensures continuous availability even during system failures. 

 CAP Theorem: 

 Consistency: Every read gets the most recent write or an 
error. 

 Availability: Every request receives a response without 
guarantee of the most recent data. 

 Partition Tolerance: The system continues to function despite 
network partitions. 

 NoSQL databases often trade off between these properties 
based on the use case. 



Types of NoSQL Databases 

 Key-Value Stores 

 Document Stores 

 Column-Family Stores 

 Graph Databases 



Types of NoSQL Databases 

 Types of NoSQL Databases: 

 Key-Value Stores 

 Structure: 

 Data is stored as key-value pairs. 

 Example: { "userID": "12345" } 

 Use Cases: 

 Caching, session storage. 

 Examples: 

 Redis, DynamoDB. 

 



Types of NoSQL Databases 

 Document Stores 

 Structure: 

 Data is stored as documents, often in JSON, BSON, or XML 
format. 

 Example:  

{ 

  "userID": "12345", 

  "name": "John Doe", 

  "orders": [ 

    {"orderID": "001", "amount": 100}, 

    {"orderID": "002", "amount": 200} 

  ] 

} 

 



Types of NoSQL Databases 

 Document Stores 

 Use Cases:Content management systems, catalogs, user 

profiles. 

 Examples:MongoDB, CouchDB. 

 



Types of NoSQL Databases 

 Column-Family Stores 

 Structure: 

 Data is stored in columns grouped into families. 

 

 Example: 

RowKey: 12345 

Name: John Doe 

OrderID: 001, 002 

Amount: 100, 200 

 

 Use Cases:Analytics, time-series data. 

 Examples:Cassandra, HBase. 
 

 



Types of NoSQL Databases 

 Graph Databases 

 Structure: 

 Data is represented as nodes, edges, and properties. 

 

 Example: 

(User) -- [LIKES] --> (Product) 

(User) -- [FRIEND] --> (User) 

 

 Use Cases: 

 Social networks, recommendation engines, fraud detection. 

 Examples: 

 Neo4j, ArangoDB. 

 

 



Advantages of NoSQL 

 Scalability:Easily scales horizontally to handle 

massive data. 

 Flexibility:No rigid schema allows changes without 

downtime. 

 High Performance:Optimized for high-speed read 

and write operations. 

 



Advantages of NoSQL 

 Distributed Architecture: 

 Built to operate across multiple servers or clusters. 

 Handles Big Data: 

 Suitable for real-time data processing and large-scale 

datasets. 



Disadvantages of NoSQL 

 Lack of Standardization:No standardized query 
language like SQL. 

 Eventual Consistency:Some NoSQL databases 
prioritize availability and partition tolerance over 
consistency. 

 Complexity in Relationships:Managing 
relationships between entities is more complex 
than in relational databases. 

 Limited Maturity:Newer than relational 
databases, with less extensive tools and 
community support. 
 



NoSQL vs. SQL 

 Applications of NoSQL: 
 Social Media: 

 Storing user data, relationships, and interactions. 

 Example: Facebook using Cassandra for messaging. 

 E-commerce: 

 Managing product catalogs and user profiles. 

 Example: Amazon DynamoDB for handling shopping cart data. 

 Real-Time Analytics: 

 Processing massive datasets with low latency. 

 Example: Redis for caching. 

 IoT and Big Data: 

 Storing and querying sensor data efficiently. 

 Example: MongoDB and Cassandra. 

 Content Management: 

 Managing unstructured data like videos, images, and documents. 

 Example: Couchbase for media applications. 

 



Querying NoSQL Databases 

 NoSQL databases do not use SQL but offer their 

query mechanisms: 

 

 MongoDB Query Example (Document Store): 

 

 db.users.find({ "name": "John Doe" }) 

 



Querying NoSQL Databases 

 Cassandra Query Example (Column-Family 

Store): 

 

 SELECT * FROM users WHERE userID = '12345'; 

 



Querying NoSQL Databases 

 Neo4j Query Example (Graph Database): 

 

MATCH (u:User)-[:LIKES]->(p:Product) 

RETURN u, p; 

 



Week 15 
215 



Database Recovery Techniques 

 Database recovery ensures that a database 

remains consistent and operational after system 

failures, crashes, or errors. Recovery mechanisms 

restore the database to a correct state while 

preserving data integrity. 



What is Database Recovery? 

 Database recovery is the process of restoring a 

database to a previous consistent state after a 

failure. 

 

 Failures can occur due to system crashes, power 

outages, hardware issues, software bugs, or user 

errors. 



Goals of Database Recovery 

 Maintain ACID properties (Atomicity, Consistency, 

Isolation, Durability). 

 Ensure that committed transactions persist, and 

incomplete transactions are rolled back. 

 Minimize downtime and data loss. 

 



Types of Failures 

 Transaction Failure:Logical errors (e.g., division by 
zero, invalid data). 

 System errors (e.g., deadlocks, resource 
unavailability). 

 System Failure:Hardware or software crashes 
affecting the database system. 

 Media Failure:Physical damage to storage media 
(e.g., disk corruption). 

 Application or User Errors:Mistakes like accidental 
deletion or incorrect data updates. 

 

 



Types of Database Recovery 

 Immediate Update 

 Changes made by a transaction are immediately written to 
the database. 

 Requires undo and redo logs to handle incomplete 
transactions. 

 Deferred Update 

 Changes made by a transaction are written to a log and 
applied to the database only after the transaction is 
committed. 

 Eliminates the need for undo operations but requires redo 
operations during recovery. 

 



Types of Database Recovery 

 In-Place Update 

 Updates are directly applied to the original data. 

 Requires a combination of undo and redo logs for 

recovery. 

 Shadow Paging 

 Instead of updating the original data, updates are 

made to a shadow copy. 

 Once the transaction commits, the shadow copy 

becomes the new database. 



Database Recovery Techniques 

 Log-Based Recovery 

 A log is a sequential record of all database 

operations. 

 Each log entry contains: 

 Transaction ID 

 Data Item (modified or accessed) 

 Old Value (before the update) 

 New Value (after the update) 

 



Database Recovery Techniques 

 Undo Logging: 

 Records old values of data items before they are 

updated. 

 If a transaction fails, the system uses the undo log to 

revert changes. 

 

 Example Log Entry: 

 <T1, X, Old_Value> 

 



Database Recovery Techniques 

 Recovery Steps: 

 Identify incomplete transactions. 

 Rollback changes using undo logs. 

 Redo Logging: 

 Records new values of data items after updates. 

 Ensures that committed transactions are reapplied after 

a crash. 

 Example Log Entry:  

 <T1, X, New_Value> 

 

 



Database Recovery Techniques 

 Recovery Steps: 

 Identify committed transactions. 

 Reapply updates using redo logs. 

 

 Undo-Redo Logging: 

 Combines both undo and redo logs to handle failures 

at any stage. 

 



Database Recovery Techniques 

 Checkpointing 

 A checkpoint is a snapshot of the database state at a 

particular point in time. 

 Helps reduce recovery time by limiting the log records that 

need to be processed. 

 Steps: 

 Flush all logs and modified data to stable storage. 

 Write a checkpoint record to the log. 

 Example Log Entry: 

<CHECKPOINT> 

 



Database Recovery Techniques 

 Recovery Steps: 

 Start from the last checkpoint. 

 Process logs to undo uncommitted transactions and redo 

committed transactions. 



Week 16 
228 



Database Recovery Techniques 

 Shadow Paging 

 Uses two copies of the database: 

 Current Page Table: The current version of the database. 

 Shadow Page Table: A backup copy of the database. 

 Process: 

 Changes are made to a copy (shadow page table). 

 Once the transaction commits, the shadow table replaces the 

current table. 



Database Recovery Techniques 

 Advantages: 

 No logging required. 

 Ensures atomicity. 

 Disadvantages: 

 High storage overhead. 

 Difficult to implement for large databases. 



Database Recovery Techniques 

 ARIES (Algorithm for Recovery and Isolation 

Exploiting Semantics) 

 ARIES is a popular recovery technique that combines 

logging, checkpoints, and a sophisticated recovery process. 

 Key Features: 

 Write-Ahead Logging (WAL): Log records must be written to 

stable storage before data changes. 

 Repeating History: During recovery, ARIES replays all operations 

from the logs. 

 Selective Undo: Only the operations of uncommitted transactions 

are undone. 



Database Recovery Techniques 

 Phases: 

 Analysis: Determine the state of all transactions at the 

time of failure. 

 Redo: Replay operations of committed transactions. 

 Undo: Rollback changes made by uncommitted 

transactions. 



Recovery in Distributed Databases 

 In distributed systems, transactions span multiple 

sites, requiring coordination for recovery. 

 Two-Phase Commit (2PC): 

 Ensures atomicity across multiple sites. 

 Steps: 

 Prepare Phase: The coordinator asks participants if they are 

ready to commit. 

 Commit Phase: If all participants agree, the transaction is 

committed. 

 



Recovery in Distributed Databases 

 Disadvantages: 

 High communication overhead. 

 Blocking issues during failures. 

 

 Three-Phase Commit (3PC): 

 Enhances 2PC by introducing a pre-commit phase to 

avoid blocking. 

 



Practical Examples of Recovery 

 Banking System: 

 If a power outage occurs during a money transfer, recovery 

ensures that either the transfer is fully completed or rolled 

back. 

 E-commerce: 

 During a crash, recovery ensures that customer orders are 

not lost or duplicated. 

 Social Media: 

 Recovery ensures that user actions (e.g., posting a comment) 

are consistently reflected even after system failures. 

 



Challenges in Recovery 

 Performance Overhead: 

 Logging and checkpointing add overhead to transaction 
processing. 

 Storage Requirements: 

 Logs and shadow copies consume additional storage space. 

 Complexity: 

 Advanced techniques like ARIES are complex to implement 
and maintain. 

 Distributed Recovery: 

 Coordinating recovery across multiple nodes or sites is 
challenging. 

 



Week 17 
237 



Future Trends in Database 

Management Systems (DBMS) 

 The field of Database Management Systems 

(DBMS) continues to evolve rapidly, driven by the 

increasing demands of big data, cloud computing, 

AI integration, and real-time analytics. Emerging 

trends are reshaping how data is stored, accessed, 

and managed. 

 



What Drives DBMS Evolution? 

 Increasing data volume, variety, and velocity (3Vs 

of Big Data). 

 Growing demand for real-time processing and 

analytics. 

 Advances in technology like AI, IoT, and cloud 

computing. 



Objectives of Modern DBMS Trends 

 Enhance performance, scalability, and reliability. 

 Improve flexibility for handling diverse workloads. 

 Support integration with modern applications and 

frameworks. 



Future Trends in DBMS 

 Cloud-Based Databases 

 Trend: Migration to cloud platforms for scalable and 

cost-effective database solutions. 

 Features: 

 On-demand scalability. 

 Managed services for reduced administrative overhead. 

 Pay-as-you-go pricing. 

 Examples: 

 Amazon RDS, Google BigQuery, Microsoft Azure SQL 

Database. 

 



Future Trends in DBMS 

 Benefits:High availability with minimal downtime. 

 Seamless integration with other cloud-native 

services. 



Future Trends in DBMS 

 Multi-Model Databases: 

 Trend: Support for multiple data models (e.g., 
relational, document, graph) in a single system. 

 Features: 

 Flexibility to store and query different data types. 

 Unified access to diverse data models. 

 Examples: 

 ArangoDB, Couchbase, Oracle. 

 Benefits: 

 Simplifies application development by reducing the need for 
multiple database systems. 

 



NoSQL and NewSQL Evolution 

 NoSQL: 

 Continued adoption for unstructured and semi-
structured data. 

 Enhanced query capabilities in NoSQL databases. 

 Examples: MongoDB, Cassandra, Redis. 

 

 NewSQL: 

 Combines the scalability of NoSQL with the ACID 
guarantees of traditional databases. 

 Examples: CockroachDB, Google Spanner. 

 

 



NoSQL and NewSQL Evolution 

 Benefits:Improved performance and consistency for 

distributed systems. 



Artificial Intelligence and Machine 

Learning Integration 

 Trend: AI-driven databases that leverage machine 

learning for optimization. 

 Applications: 

 Query optimization using AI algorithms. 

 Predictive maintenance for database systems. 

 Automated indexing and schema design. 

 



Artificial Intelligence and Machine 

Learning Integration 

 Examples:Oracle Autonomous Database. 

 Benefits:Reduces the need for manual tuning and 

management. 

 Enhances performance and efficiency. 



Real-Time Analytics and Stream 

Processing 

 Trend: Increasing demand for real-time data analysis 
and decision-making. 

 Features: 

 Support for real-time data ingestion and querying. 

 Integration with streaming platforms like Apache Kafka. 

 Examples: 

 Apache Druid, Snowflake, Google BigQuery. 

 Benefits: 

 Enables applications like fraud detection, IoT monitoring, 
and personalized recommendations. 

 



Blockchain and Decentralized 

Databases 

 Trend: Integration of blockchain technology into 
databases. 

 Features: 

 Immutable ledgers for secure and transparent data storage. 

 Support for distributed and decentralized systems. 

 Examples: 

 BigchainDB, Hyperledger Fabric. 

 Benefits: 

 Enhanced data security and auditability. 

 Suitable for industries like finance, supply chain, and 
healthcare. 

 



In-Memory Databases 

 Trend: Use of in-memory databases for ultra-fast 

performance. 

 Features: 

 Data stored in RAM instead of traditional storage. 

 Optimized for low-latency access. 

 Examples: 

 SAP HANA, Redis, Memcached. 

 Benefits: 

 Accelerates analytics and real-time processing. 

 



Challenges in Adopting New Trends 

 Integration with Legacy Systems: 

 Difficulty in integrating modern DBMS with existing 
infrastructure. 

 Cost: 

 High cost of adopting and maintaining advanced systems. 

 Security Concerns: 

 Increased attack surface with distributed and cloud-based 
databases. 

 Skill Gap: 

 Need for specialized knowledge to manage advanced 
databases. 

 


