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OpenGLStages

⚫ After projection, several stages before objects drawn to screen

⚫ These stages arenon‐programmable

Transform Projection
Primitive  

Assembly Clipping

Rasterization
Hidden

Surface

Removal

Vertex shader: programmable NOT programmable
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PrimitiveAssembly

⚫ Up till now: Transformations and projections 
applied to  vertices individually

⚫ Primitive assembly: After transforms, 
projections,  individual vertices grouped 
back into primitives

⚫ E.g. v6, v7 and v8 grouped back into triangle

v1

v2
v6

v6
v3

v7
v8

v4

v5
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Clipping

⚫ After primitive assembly, subsequent operationsare 
per‐primitive

⚫ Clipping: Remove primitives (lines, polygons, text,  
curves) outside view frustum (canonical view volume)

Clipping lines Clipping polygons
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Rasterization

⚫ Determine which pixels that primitives map to
⚫ Fragment generation

⚫ Rasterization or scanconversion
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Fragment Processing

⚫ Some tasks deferred until fragment processing

Hidden Surface Removal
Antialiasing

Transformation  

Projection

Hidden surface Removal  

Antialiasing
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Clipping



Clipping: Windowing
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Clipping: Windowing
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Clipping: Windowing
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Clipping
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Clipping

⚫ 2D and 3Dclipping algorithms
⚫ 2D against clippingwindow

⚫ 3D against clippingvolume

⚫ 2D clipping
⚫ Lines (e.g.dino.dat)

⚫ Polygons

⚫ Curves

⚫ Text
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Clipping 2D LineSegments

⚫ Brute force approach: compute 

intersections  with all sides of the 

clipping window

⚫ Inefficient: one division per intersection
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2D Clipping

x = xmaxx = xmin

⚫ Better Idea: eliminate as many cases as possible  

without computing intersections

⚫ Cohen‐Sutherland Clippingalgorithm

y = ymax

y = ymin
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Clipping Points

(xmax, ymax)

(xmin, ymin)

Determine whether a point 

(x,y) is inside or outside of 

the world window.

If (xmin <= x <= xmax)

and (ymin <= y <= ymax)

then the point (x,y) is

inside  else the point is

outside
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Clipping Lines

3 cases:

Case 1: All of line in  

Case 2: All of line out  

Case 3: Part in, part out

(xmin, ymin)

(xmax, ymax)

1

2

3
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Clipping Lines: TrivialAccept

Case 1: All of line in  Test line

endpoints:

Note: simply comparing the x,y

values of endpoints to the 

x,y values of the rectangle

Result: trivially accepted. Draw 

the line completely.

(Xmax, Ymax)

p1

p2

(Xmin, Ymin)

Xmin <= P1.x, P2.x <= Xmax and  
Ymin <= P1.y, P2.y <= Ymax
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Clipping Lines: TrivialReject

Case 2: All of line out  Test line 

endpoints:

Note: simply comparing the x,y

values of  endpoints to the 

x,y values of the rectangle

Result: trivially rejected.  Don’t 

draw the line.

p1

p2

▪p1.x, p2.x <= Xmin OR

▪p1.x, p2.x >= Xmax OR

▪p1.y, p2.y <= ymin OR

▪p1.y, p2.y >= ymax
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Clipping Lines: Non‐TrivialCases

Case 3: Part in, part out

Two variations:

• One point in, other out

• Both points out, but part of 

the line cuts  through the 

viewport
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Cohen-Sutherland Algorithm

• The Cohen-Sutherland Line-Clipping Algorithm 
performs initial tests on a line to determine whether 
intersection calculations can be avoided. 
1. First, end-point pairs are checked for Trivial 

Acceptance. 
2. If the line cannot be trivially accepted, region checks 

are done for Trivial Rejection. 
3. If the line segment can be neither trivially accepted 

nor rejected, it is divided into two segments at a clip 
edge, so that one segment can be trivially rejected. 

• These three steps are performed iteratively until 
what remains can be trivially accepted or rejected.
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Cohen-Sutherland: World Division

• World Space is divided 
into regions based on the 
window boundaries
• Each region has a 

unique 4-bit region 
code

• Region codes indicate 
the position of the 
regions with respect 
to the window

Shawon, CSE, KUETAugust 8, 2025 21



Cohen-Sutherland Algorithm
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Bit3 = 1 if y > ymax

Bit2 = 1 if y < ymin 



Cohen-Sutherland Algorithm

• A line segment can be trivially accepted (visible) if 

the outcodes of both the endpoints are zero. 

• A line segment can be trivially rejected (not visible) 

if the logical AND of the outcodes of the endpoints 

is not zero.

• A line segment is clipping candidate if the logical 

AND of the outcodes of the endpoints is zero.
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Pseudo Code
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✓ Assign a region code for 2 cut points of a given line

✓ If both have region code 0000 then the line is accepted 

completely

✓ Else perform logical AND operation for both region codes

✓ If the result is not 0000, the line is outside

✓ Else line is partially inside

i.    Choose an endpoint of the line that is outside the given 

rectangle 

ii.    find intersection point

iii.    Replace the endpoint with the intersection point and update 

the region code

iv.     Repeat step 2 until the line is trivially accepted or rejected.



Intersect point

• If bit 3 is 1, intersect with line y = ymax . 

• If bit 2 is 1, intersect with line y = ymin 

• If bit 1 is 1, intersect with line x = xmax 

• If bit 0 is 1, intersect with line x = xmin
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Intersect Point (Xi, Yi)
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Cohen-Sutherland Algorithm
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Cohen-Sutherland Algorithm
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Cohen-Sutherland Algorithm
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Cohen-Sutherland Algorithm
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Cohen-Sutherland Algorithm
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Another Example



Cohen-Sutherland Algorithm
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Another Example



Cohen‐Sutherland pseudocode(Hill)

int clipSegment(Point2& p1, Point2& p2, RealRect W)

{

do{

if(trivial accept) return 1; // whole line survives

if(trivial reject) return 0; // no portion survives

// now chop

if(p1 is outside)

// find surviving segment

{

if(p1 is to the left) chop against left edge

else if(p1 is to the right) chop against right edge  

else if(p1 is below) chop against the bottom edge  

else if(p1 is above) chop against the top edge

}
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Cohen‐Sutherland pseudocode(Hill)

else // p2 is outside

// find surviving segment

{

if(p2 is to the left) chop against left edge  

else if(p2 is to right) chop against right edge  

else if(p2 is below) chop against the bottom edge  

else if(p2 is above) chop against the top edge

}

}while(1);

}
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Parametric Line-Clipping

(1) This fundamentally different (from the Cohen-Sutherland 

algorithm) and generally more efficient algorithm was 

originally published by Cyrus and Beck.

(2) Liang and Barsky later independently developed a more 

efficient algorithm that is especially fast in the special cases 

of upright 2D and 3D clipping regions. They also introduced 

more efficient trivial rejection tests for general clip regions.
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The Cyrus-Beck Algorithm
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The Cyrus-Beck Algorithm
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The Cyrus-Beck Algorithm
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The Cyrus-Beck Algorithm
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The Cyrus-Beck Algorithm
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The Cyrus-Beck Algorithm
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The Cyrus-Beck Algorithm
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Liang-Barsky Improvement
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Comparison

❖Cohen-Sutherland:

▪ Repeated clipping is expensive

▪ It is best used when trivial acceptance and 

rejection are possible for most lines

❖Liang-Barsky:

▪ Computation of t-intersections is cheap

▪ Computation of (x,y) clip points is only done 

once

▪ The algorithm doesn't consider trivial 

accepts/rejects

▪ Best when many lines must be clipped
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Polygon / Area Clipping

• Similarly to lines, areas must 

be clipped to a window 

boundary 

• Consideration must be taken 

as to which portions of the 

area must be clipped
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Polygon Clipping

• We know how to clip a single line segment

• How about a polygon in 2D?

• How about in 3D?

• Clipping polygons is more complex than clipping 

the individual lines

• Input: polygon

• Output: polygon, or nothing
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Polygon Clipping

• To clip a polygon, we cannot directly apply a line-
clipping method to the individual polygon edges 
because this approach would produce a series of 
unconnected line segments as shown in the figure.
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Why is Clipping Hard?
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Polygon Clipping

• Convex polygonal clipping window. 
• Convex polygon: if the line joining two interior 

points lies completely inside the polygon. 
• Otherwise, it is called a concave polygon
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Polygon Clipping
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Polygon Clipping
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• The Left-hand side of any directed edge 𝑃𝑖 − 1𝑃𝑖 

or 𝑃𝑁𝑃1 points inside the polygon

• Let, a point P(x,y). If it is to the left of every 

edge of the polygon, it is inside the polygon



Sutherland-Hodgman Algorithm
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• A technique for clipping areas developed by 

Sutherland & Hodgman

• Put simply the polygon is clipped by comparing it 

against each boundary in turn



Sutherland-Hodgman Polygon 

Clipping
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Polygon Clipping
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Sutherland-Hodgman Algorithm
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• P1, P2, ....., PN be vertex list of the polygon to be 

clipped (subject polygon).

• Edge E, defined by points A and B, be any edge of 

the positively oriented, convex clipping polygon

• Vertex output list - a list containing the vertices 

that are to be displayed after clipping



Sutherland-Hodgman Algorithm
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Consider edge 𝑃𝑖 − 1𝑃𝑖 
• If both Pi-1 and Pi are left of the edge E, place Pi to 

the vertex output list

• If both Pi-1 and Pi are right of the edge, place 

nothing to the vertex output list

• If Pi-1 is left and Pi is right of the edge, find intersect 

point I and place I to the vertex output list

• If Pi-1 is right and Pi is left of the edge, find intersect 

point I and place both I and Pi to the vertex output 

list

The Algorithm proceeds by passing each clipped 

polygon to the next edge of the window.



Sutherland-Hodgman Algorithm
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Sutherland-Hodgman Algorithm
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Sutherland-Hodgman Algorithm
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Example

Shawon, CSE, KUETAugust 8, 2025 61



Example
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Example
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Example
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Example
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Point-to-line test

Shawon, CSE, KUETAugust 8, 2025 66



Finding Line-edge interactions
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• The Sutherland-Hodgman algorithm correctly 

clips convex polygons, but concave polygons may 

be displayed with extraneous lines

• Since there is only one output vertex list, the last 

vertex in the list is always joined to the first 

vertex.

Unwanted effect
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• can be used to clip either a convex or a concave 

polygon.

• The basic idea of this algorithm is that instead of 

proceeding around the polygon edges as vertices 

are processed, we will follow the window 

boundaries.

• The path we follow depends on:

• polygon-processing direction (clockwise or 

counterclockwise)

• The pair of polygon vertices

• outside-to-inside or inside-to-outside.

Weiler-Atherton Polygon Clipping
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• For clockwise processing of polygon vertices, we 

use the following rules:

• For an outside-to-inside pair of vertices, follow 

polygon boundaries.

• For an inside-to-outside pair of vertices, follow 

window boundaries in a clockwise direction.

Weiler-Atherton Polygon Clipping
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Weiler-Atherton Polygon Clipping
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Viewport Transformation
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Window vs Viewport

• Window

• World-coordinate area selected for display

• What is to be viewed

• Viewport

• Area on the display device to which a window 

is mapped

• Where it is to be displayed
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Viewport Transformation
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Viewport Transformation
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Viewport Transformation
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