
Clipping
Amartya Kundu Durjoy

Lecturer, CSE, UGV

OpenGLStages

⚫ After projection, several stages before objects drawn to screen

⚫ These stages arenon‐programmable

Transform Projection
Primitive

Assembly Clipping

Rasterization
Hidden

Surface

Removal

Vertex shader: programmable NOT programmable

2August 8, 2025 Shawon, CSE, KUET

PrimitiveAssembly

⚫ Up till now: Transformations and projections
applied to vertices individually

⚫ Primitive assembly: After transforms,
projections, individual vertices grouped
back into primitives

⚫ E.g. v6, v7 and v8 grouped back into triangle

v1

v2
v6

v6
v3

v7
v8

v4

v5

3August 8, 2025 Shawon, CSE, KUET

Clipping

⚫ After primitive assembly, subsequent operationsare
per‐primitive

⚫ Clipping: Remove primitives (lines, polygons, text,
curves) outside view frustum (canonical view volume)

Clipping lines Clipping polygons

4August 8, 2025 Shawon, CSE, KUET

Rasterization

⚫ Determine which pixels that primitives map to
⚫ Fragment generation

⚫ Rasterization or scanconversion

5August 8, 2025 Shawon, CSE, KUET

Fragment Processing

⚫ Some tasks deferred until fragment processing

Hidden Surface Removal
Antialiasing

Transformation

Projection

Hidden surface Removal

Antialiasing

6August 8, 2025 Shawon, CSE, KUET

Clipping

Clipping: Windowing

Shawon, CSE, KUETAugust 8, 2025 8

Clipping: Windowing

Shawon, CSE, KUETAugust 8, 2025 9

Clipping: Windowing

Shawon, CSE, KUETAugust 8, 2025 10

Clipping

Shawon, CSE, KUETAugust 8, 2025 11

Clipping

⚫ 2D and 3Dclipping algorithms
⚫ 2D against clippingwindow

⚫ 3D against clippingvolume

⚫ 2D clipping
⚫ Lines (e.g.dino.dat)

⚫ Polygons

⚫ Curves

⚫ Text

12August 8, 2025 Shawon, CSE, KUET

Clipping 2D LineSegments

⚫ Brute force approach: compute

intersections with all sides of the

clipping window

⚫ Inefficient: one division per intersection

13August 8, 2025 Shawon, CSE, KUET

2D Clipping

x = xmaxx = xmin

⚫ Better Idea: eliminate as many cases as possible

without computing intersections

⚫ Cohen‐Sutherland Clippingalgorithm

y = ymax

y = ymin

14August 8, 2025 Shawon, CSE, KUET

Clipping Points

(xmax, ymax)

(xmin, ymin)

Determine whether a point

(x,y) is inside or outside of

the world window.

If (xmin <= x <= xmax)

and (ymin <= y <= ymax)

then the point (x,y) is

inside else the point is

outside

15August 8, 2025 Shawon, CSE, KUET

Clipping Lines

3 cases:

Case 1: All of line in

Case 2: All of line out

Case 3: Part in, part out

(xmin, ymin)

(xmax, ymax)

1

2

3

16August 8, 2025 Shawon, CSE, KUET

Clipping Lines: TrivialAccept

Case 1: All of line in Test line

endpoints:

Note: simply comparing the x,y

values of endpoints to the

x,y values of the rectangle

Result: trivially accepted. Draw

the line completely.

(Xmax, Ymax)

p1

p2

(Xmin, Ymin)

Xmin <= P1.x, P2.x <= Xmax and
Ymin <= P1.y, P2.y <= Ymax

17August 8, 2025 Shawon, CSE, KUET

Clipping Lines: TrivialReject

Case 2: All of line out Test line

endpoints:

Note: simply comparing the x,y

values of endpoints to the

x,y values of the rectangle

Result: trivially rejected. Don’t

draw the line.

p1

p2

▪p1.x, p2.x <= Xmin OR

▪p1.x, p2.x >= Xmax OR

▪p1.y, p2.y <= ymin OR

▪p1.y, p2.y >= ymax

18August 8, 2025 Shawon, CSE, KUET

Clipping Lines: Non‐TrivialCases

Case 3: Part in, part out

Two variations:

• One point in, other out

• Both points out, but part of

the line cuts through the

viewport

19August 8, 2025 Shawon, CSE, KUET

Cohen-Sutherland Algorithm

• The Cohen-Sutherland Line-Clipping Algorithm
performs initial tests on a line to determine whether
intersection calculations can be avoided.
1. First, end-point pairs are checked for Trivial

Acceptance.
2. If the line cannot be trivially accepted, region checks

are done for Trivial Rejection.
3. If the line segment can be neither trivially accepted

nor rejected, it is divided into two segments at a clip
edge, so that one segment can be trivially rejected.

• These three steps are performed iteratively until
what remains can be trivially accepted or rejected.

Shawon, CSE, KUETAugust 8, 2025 20

Cohen-Sutherland: World Division

• World Space is divided
into regions based on the
window boundaries
• Each region has a

unique 4-bit region
code

• Region codes indicate
the position of the
regions with respect
to the window

Shawon, CSE, KUETAugust 8, 2025 21

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 22

Bit3 = 1 if y > ymax

Bit2 = 1 if y < ymin

Cohen-Sutherland Algorithm

• A line segment can be trivially accepted (visible) if

the outcodes of both the endpoints are zero.

• A line segment can be trivially rejected (not visible)

if the logical AND of the outcodes of the endpoints

is not zero.

• A line segment is clipping candidate if the logical

AND of the outcodes of the endpoints is zero.

Shawon, CSE, KUETAugust 8, 2025 23

Pseudo Code

Shawon, CSE, KUETAugust 8, 2025 24

✓ Assign a region code for 2 cut points of a given line

✓ If both have region code 0000 then the line is accepted

completely

✓ Else perform logical AND operation for both region codes

✓ If the result is not 0000, the line is outside

✓ Else line is partially inside

i. Choose an endpoint of the line that is outside the given

rectangle

ii. find intersection point

iii. Replace the endpoint with the intersection point and update

the region code

iv. Repeat step 2 until the line is trivially accepted or rejected.

Intersect point

• If bit 3 is 1, intersect with line y = ymax .

• If bit 2 is 1, intersect with line y = ymin

• If bit 1 is 1, intersect with line x = xmax

• If bit 0 is 1, intersect with line x = xmin

Shawon, CSE, KUETAugust 8, 2025 25

Intersect Point (Xi, Yi)

Shawon, CSE, KUETAugust 8, 2025 26

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 27

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 28

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 29

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 30

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 31

Another Example

Cohen-Sutherland Algorithm

Shawon, CSE, KUETAugust 8, 2025 32

Another Example

Cohen‐Sutherland pseudocode(Hill)

int clipSegment(Point2& p1, Point2& p2, RealRect W)

{

do{

if(trivial accept) return 1; // whole line survives

if(trivial reject) return 0; // no portion survives

// now chop

if(p1 is outside)

// find surviving segment

{

if(p1 is to the left) chop against left edge

else if(p1 is to the right) chop against right edge

else if(p1 is below) chop against the bottom edge

else if(p1 is above) chop against the top edge

}

33August 8, 2025 Shawon, CSE, KUET

Cohen‐Sutherland pseudocode(Hill)

else // p2 is outside

// find surviving segment

{

if(p2 is to the left) chop against left edge

else if(p2 is to right) chop against right edge

else if(p2 is below) chop against the bottom edge

else if(p2 is above) chop against the top edge

}

}while(1);

}

34August 8, 2025 Shawon, CSE, KUET

Parametric Line-Clipping

(1) This fundamentally different (from the Cohen-Sutherland

algorithm) and generally more efficient algorithm was

originally published by Cyrus and Beck.

(2) Liang and Barsky later independently developed a more

efficient algorithm that is especially fast in the special cases

of upright 2D and 3D clipping regions. They also introduced

more efficient trivial rejection tests for general clip regions.

Shawon, CSE, KUETAugust 8, 2025 35

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 36

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 37

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 38

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 39

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 40

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 41

The Cyrus-Beck Algorithm

Shawon, CSE, KUETAugust 8, 2025 42

Liang-Barsky Improvement

Shawon, CSE, KUETAugust 8, 2025 43

Shawon, CSE, KUETAugust 8, 2025 44

Comparison

❖Cohen-Sutherland:

▪ Repeated clipping is expensive

▪ It is best used when trivial acceptance and

rejection are possible for most lines

❖Liang-Barsky:

▪ Computation of t-intersections is cheap

▪ Computation of (x,y) clip points is only done

once

▪ The algorithm doesn't consider trivial

accepts/rejects

▪ Best when many lines must be clipped

Shawon, CSE, KUETAugust 8, 2025 45

Polygon / Area Clipping

• Similarly to lines, areas must

be clipped to a window

boundary

• Consideration must be taken

as to which portions of the

area must be clipped

Shawon, CSE, KUETAugust 8, 2025 46

Polygon Clipping

• We know how to clip a single line segment

• How about a polygon in 2D?

• How about in 3D?

• Clipping polygons is more complex than clipping

the individual lines

• Input: polygon

• Output: polygon, or nothing

Shawon, CSE, KUETAugust 8, 2025 47

Polygon Clipping

• To clip a polygon, we cannot directly apply a line-
clipping method to the individual polygon edges
because this approach would produce a series of
unconnected line segments as shown in the figure.

Shawon, CSE, KUETAugust 8, 2025 48

Why is Clipping Hard?

Shawon, CSE, KUETAugust 8, 2025 49

Polygon Clipping

• Convex polygonal clipping window.
• Convex polygon: if the line joining two interior

points lies completely inside the polygon.
• Otherwise, it is called a concave polygon

Shawon, CSE, KUETAugust 8, 2025 50

Polygon Clipping

Shawon, CSE, KUETAugust 8, 2025 51

Polygon Clipping

Shawon, CSE, KUETAugust 8, 2025 52

• The Left-hand side of any directed edge 𝑃𝑖 − 1𝑃𝑖

or 𝑃𝑁𝑃1 points inside the polygon

• Let, a point P(x,y). If it is to the left of every

edge of the polygon, it is inside the polygon

Sutherland-Hodgman Algorithm

Shawon, CSE, KUETAugust 8, 2025 53

• A technique for clipping areas developed by

Sutherland & Hodgman

• Put simply the polygon is clipped by comparing it

against each boundary in turn

Sutherland-Hodgman Polygon

Clipping

Shawon, CSE, KUETAugust 8, 2025 54

Polygon Clipping

Shawon, CSE, KUETAugust 8, 2025 55

Sutherland-Hodgman Algorithm

Shawon, CSE, KUETAugust 8, 2025 56

• P1, P2,, PN be vertex list of the polygon to be

clipped (subject polygon).

• Edge E, defined by points A and B, be any edge of

the positively oriented, convex clipping polygon

• Vertex output list - a list containing the vertices

that are to be displayed after clipping

Sutherland-Hodgman Algorithm

Shawon, CSE, KUETAugust 8, 2025 57

Consider edge 𝑃𝑖 − 1𝑃𝑖
• If both Pi-1 and Pi are left of the edge E, place Pi to

the vertex output list

• If both Pi-1 and Pi are right of the edge, place

nothing to the vertex output list

• If Pi-1 is left and Pi is right of the edge, find intersect

point I and place I to the vertex output list

• If Pi-1 is right and Pi is left of the edge, find intersect

point I and place both I and Pi to the vertex output

list

The Algorithm proceeds by passing each clipped

polygon to the next edge of the window.

Sutherland-Hodgman Algorithm

Shawon, CSE, KUETAugust 8, 2025 58

Sutherland-Hodgman Algorithm

Shawon, CSE, KUETAugust 8, 2025 59

Sutherland-Hodgman Algorithm

Shawon, CSE, KUETAugust 8, 2025 60

Example

Shawon, CSE, KUETAugust 8, 2025 61

Example

Shawon, CSE, KUETAugust 8, 2025 62

Example

Shawon, CSE, KUETAugust 8, 2025 63

Example

Shawon, CSE, KUETAugust 8, 2025 64

Example

Shawon, CSE, KUETAugust 8, 2025 65

Point-to-line test

Shawon, CSE, KUETAugust 8, 2025 66

Finding Line-edge interactions

Shawon, CSE, KUETAugust 8, 2025 67

Shawon, CSE, KUETAugust 8, 2025 68

• The Sutherland-Hodgman algorithm correctly

clips convex polygons, but concave polygons may

be displayed with extraneous lines

• Since there is only one output vertex list, the last

vertex in the list is always joined to the first

vertex.

Unwanted effect

Shawon, CSE, KUETAugust 8, 2025 69

• can be used to clip either a convex or a concave

polygon.

• The basic idea of this algorithm is that instead of

proceeding around the polygon edges as vertices

are processed, we will follow the window

boundaries.

• The path we follow depends on:

• polygon-processing direction (clockwise or

counterclockwise)

• The pair of polygon vertices

• outside-to-inside or inside-to-outside.

Weiler-Atherton Polygon Clipping

Shawon, CSE, KUETAugust 8, 2025 70

• For clockwise processing of polygon vertices, we

use the following rules:

• For an outside-to-inside pair of vertices, follow

polygon boundaries.

• For an inside-to-outside pair of vertices, follow

window boundaries in a clockwise direction.

Weiler-Atherton Polygon Clipping

Shawon, CSE, KUETAugust 8, 2025 71

Weiler-Atherton Polygon Clipping

Shawon, CSE, KUETAugust 8, 2025 72

Viewport Transformation

Shawon, CSE, KUETAugust 8, 2025 73

Window vs Viewport

• Window

• World-coordinate area selected for display

• What is to be viewed

• Viewport

• Area on the display device to which a window

is mapped

• Where it is to be displayed

Shawon, CSE, KUETAugust 8, 2025 74

Viewport Transformation

Shawon, CSE, KUETAugust 8, 2025 75

Viewport Transformation

Shawon, CSE, KUETAugust 8, 2025 76

Viewport Transformation

References

⚫ Angel and Shreiner, Interactive ComputerGraphics,

6th edition

⚫ Hill and Kelley,Computer Graphics using OpenGL, 3rd

edition

⚫ Dr. Sk. Md. Masudul Ahsan, (2022), L7 Clipping hov [PDF

document], Khulna University of Engineering &

Technology.

77August 8, 2025 Shawon, CSE, KUET

	Slide 1: Clipping
	Slide 2: OpenGL Stages
	Slide 3: Primitive Assembly
	Slide 4: Clipping
	Slide 5: Rasterization
	Slide 6: Fragment Processing
	Slide 7: Clipping
	Slide 8: Clipping: Windowing
	Slide 9: Clipping: Windowing
	Slide 10: Clipping: Windowing
	Slide 11: Clipping
	Slide 12: Clipping
	Slide 13: Clipping 2D Line Segments
	Slide 14: 2D Clipping
	Slide 15: Clipping Points
	Slide 16: Clipping Lines
	Slide 17: Clipping Lines: Trivial Accept
	Slide 18: Clipping Lines: Trivial Reject
	Slide 19: Clipping Lines: Non‐Trivial Cases
	Slide 20: Cohen-Sutherland Algorithm
	Slide 21: Cohen-Sutherland: World Division
	Slide 22: Cohen-Sutherland Algorithm
	Slide 23: Cohen-Sutherland Algorithm
	Slide 24: Pseudo Code
	Slide 25: Intersect point
	Slide 26: Intersect Point (Xi, Yi)
	Slide 27: Cohen-Sutherland Algorithm
	Slide 28: Cohen-Sutherland Algorithm
	Slide 29: Cohen-Sutherland Algorithm
	Slide 30: Cohen-Sutherland Algorithm
	Slide 31: Cohen-Sutherland Algorithm
	Slide 32: Cohen-Sutherland Algorithm
	Slide 33: Cohen‐Sutherland pseudocode (Hill)
	Slide 34: Cohen‐Sutherland pseudocode (Hill)
	Slide 35: Parametric Line-Clipping
	Slide 36: The Cyrus-Beck Algorithm
	Slide 37: The Cyrus-Beck Algorithm
	Slide 38: The Cyrus-Beck Algorithm
	Slide 39: The Cyrus-Beck Algorithm
	Slide 40: The Cyrus-Beck Algorithm
	Slide 41: The Cyrus-Beck Algorithm
	Slide 42: The Cyrus-Beck Algorithm
	Slide 43: Liang-Barsky Improvement
	Slide 44
	Slide 45: Comparison
	Slide 46: Polygon / Area Clipping
	Slide 47: Polygon Clipping
	Slide 48: Polygon Clipping
	Slide 49: Why is Clipping Hard?
	Slide 50: Polygon Clipping
	Slide 51: Polygon Clipping
	Slide 52: Polygon Clipping
	Slide 53: Sutherland-Hodgman Algorithm
	Slide 54: Sutherland-Hodgman Polygon Clipping
	Slide 55: Polygon Clipping
	Slide 56: Sutherland-Hodgman Algorithm
	Slide 57: Sutherland-Hodgman Algorithm
	Slide 58: Sutherland-Hodgman Algorithm
	Slide 59: Sutherland-Hodgman Algorithm
	Slide 60: Sutherland-Hodgman Algorithm
	Slide 61: Example
	Slide 62: Example
	Slide 63: Example
	Slide 64: Example
	Slide 65: Example
	Slide 66: Point-to-line test
	Slide 67: Finding Line-edge interactions
	Slide 68: Unwanted effect
	Slide 69: Weiler-Atherton Polygon Clipping
	Slide 70: Weiler-Atherton Polygon Clipping
	Slide 71: Weiler-Atherton Polygon Clipping
	Slide 72: Viewport Transformation
	Slide 73: Window vs Viewport
	Slide 74: Viewport Transformation
	Slide 75: Viewport Transformation
	Slide 76: Viewport Transformation
	Slide 77: References

