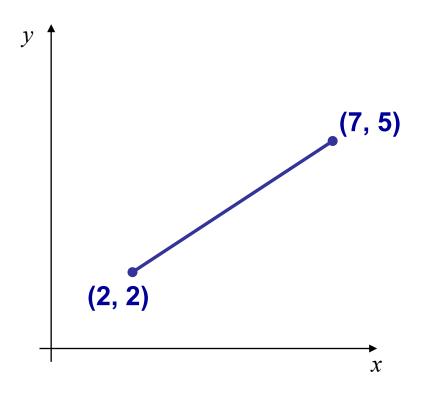
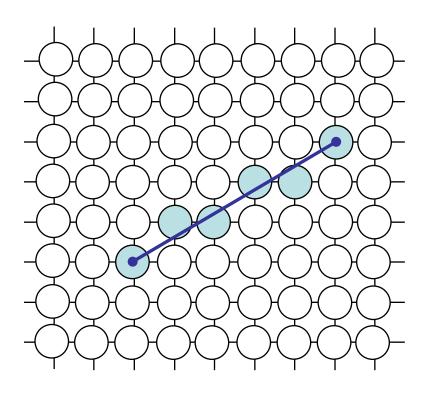
The Problem Of Scan Conversion

A line segment in a scene is defined by the coordinate positions of the line end-points



The Problem (cont...)



How do we choose which pixels to turn on?

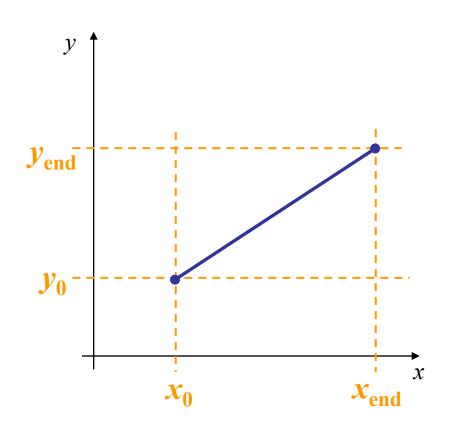
Considerations

Considerations to keep in mind:

- The line has to look good
 - Avoid jaggies
- It has to be lightening fast!
 - How many lines need to be drawn in a typical scene?
 - This is going to come back to bite us again and again

Line Equations

Let's quickly review the equations involved in drawing lines



Slope-intercept line equation:

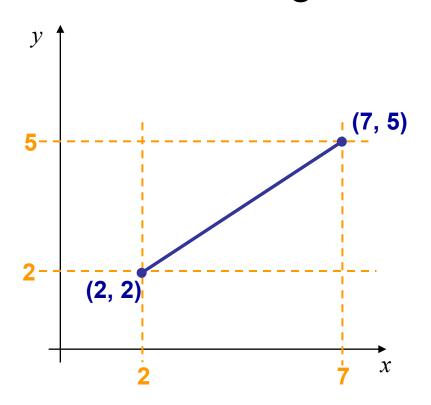
$$y = m \cdot x + b$$

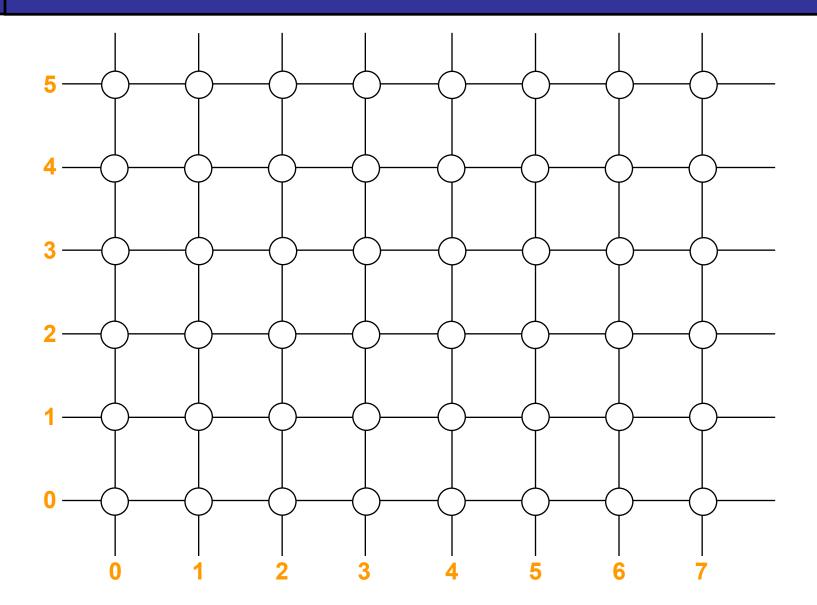
where:

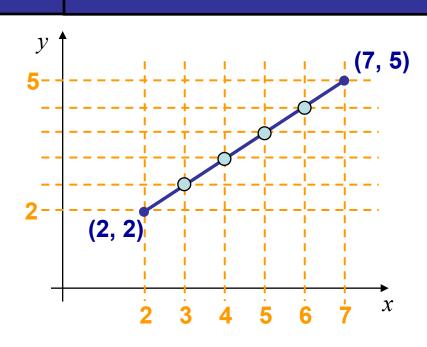
$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$
$$b = y_0 - m \cdot x_0$$

A Very Simple Solution

We could simply work out the corresponding y coordinate for each unit x coordinate Let's consider the following example:







First work out *m* and *b*:

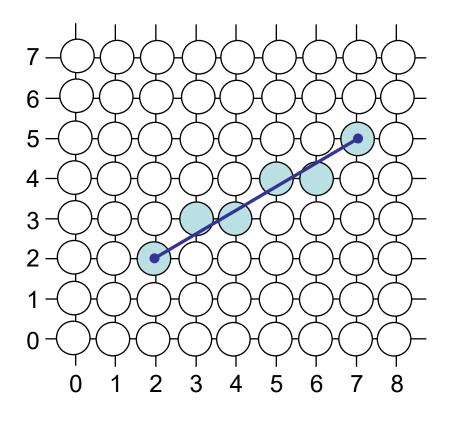
$$m = \frac{5-2}{7-2} = \frac{3}{5}$$

$$b = 2 - \frac{3}{5} * 2 = \frac{4}{5}$$

Now for each *x* value work out the *y* value:

$$y(3) = \frac{3}{5} \cdot 3 + \frac{4}{5} = 2\frac{3}{5} \qquad y(4) = \frac{3}{5} \cdot 4 + \frac{4}{5} = 3\frac{1}{5}$$
$$y(5) = \frac{3}{5} \cdot 5 + \frac{4}{5} = 3\frac{4}{5} \qquad y(6) = \frac{3}{5} \cdot 6 + \frac{4}{5} = 4\frac{2}{5}$$

Now just round off the results and turn on these pixels to draw our line



$$y(3) = 2\frac{3}{5} \approx 3$$

$$y(4) = 3\frac{1}{5} \approx 3$$

$$y(5) = 3\frac{4}{5} \approx 4$$

$$y(6) = 4\frac{2}{5} \approx 4$$

However, this approach is just way too slow In particular look out for:

- The equation y = mx + b requires the multiplication of m by x
- Rounding off the resulting y coordinates

We need a faster solution

A Quick Note About Slopes

In the previous example we chose to solve the parametric line equation to give us the *y* coordinate for each unit *x* coordinate

What if we had done it the other way around?

So this gives us:
$$x = \frac{y - b}{m}$$

where:
$$m = \frac{y_{end} - y_0}{x_{end} - x_0}$$
 and $b = y_0 - m \cdot x_0$

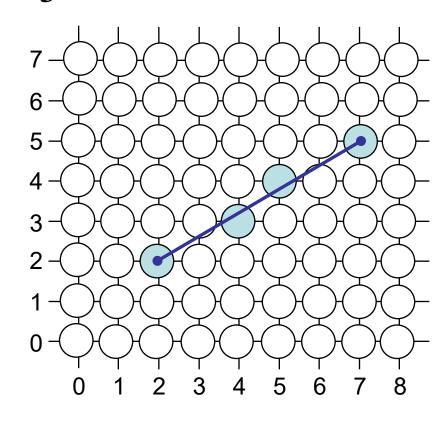
A Quick Note About Slopes (cont...)

Leaving out the details this gives us:

$$x(3) = 3\frac{2}{3} \approx 4$$
 $x(4) = 5\frac{1}{3} \approx 5$

We can see easily that this line doesn't look very good!

We choose which way to work out the line pixels based on the slope of the line

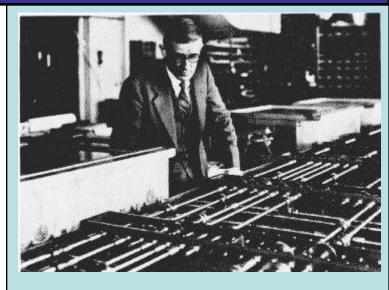


A Quick Note About Slopes

- If |m|<1, then for every integer value of x between and excluding x1 and x2, calculate the corresponding value of y using equation Δy = m Δx & scan convert (x,y).
- If |m|>1, then for every integer value of y between and excluding y1 and y2, calculate the corresponding value of x using equation Δx = Δy/m & scan convert (x,y).
- If $|\mathbf{m}|=1$, $\Delta \mathbf{x} = \Delta \mathbf{y}$. In each case, a smooth line with slope m is generated between the specific endpoints.

The DDA Algorithm

The digital differential analyzer (DDA) algorithm takes an incremental approach in order to speed up scan conversion Simply calculate y_{k+1} based on y_k



The original differential analyzer was a physical machine developed by Vannevar Bush at MIT in the 1930's in order to solve ordinary differential equations.

More information here.

The DDA Algorithm (cont...)

Consider the list of points that we determined for the line in our previous example:

$$(2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)$$

Notice that as the x coordinates go up by one, the y coordinates simply go up by the slope of the line

This is the key insight in the DDA algorithm

The DDA Algorithm (cont...)

When the slope of the line is between -1 and 1 begin at the first point in the line and, by incrementing the x coordinate by 1, calculate the corresponding y coordinates as follows:

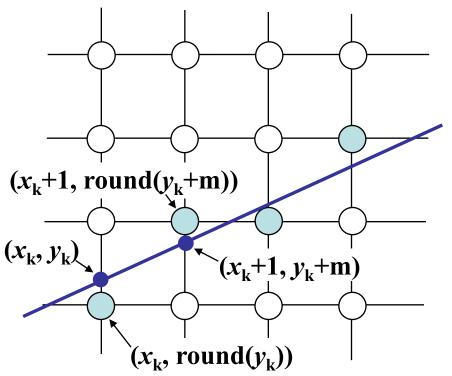
$$y_{k+1} = y_k + m$$

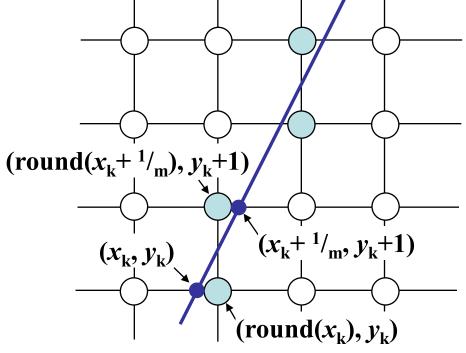
When the slope is outside these limits, increment the *y* coordinate by 1 and calculate the corresponding *x* coordinates as follows:

$$x_{k+1} = x_k + \frac{1}{m}$$

The DDA Algorithm (cont...)

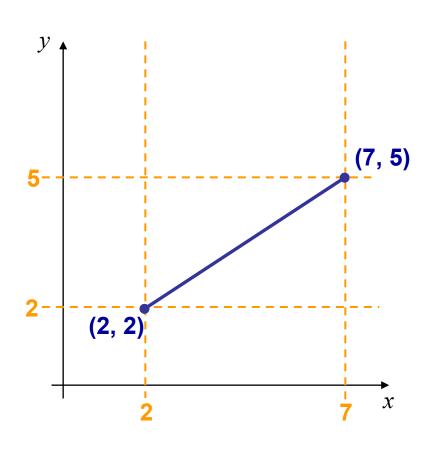
Again the values calculated by the equations used by the DDA algorithm must be rounded to match pixel values

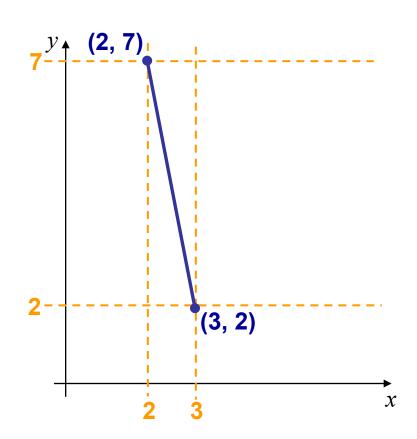




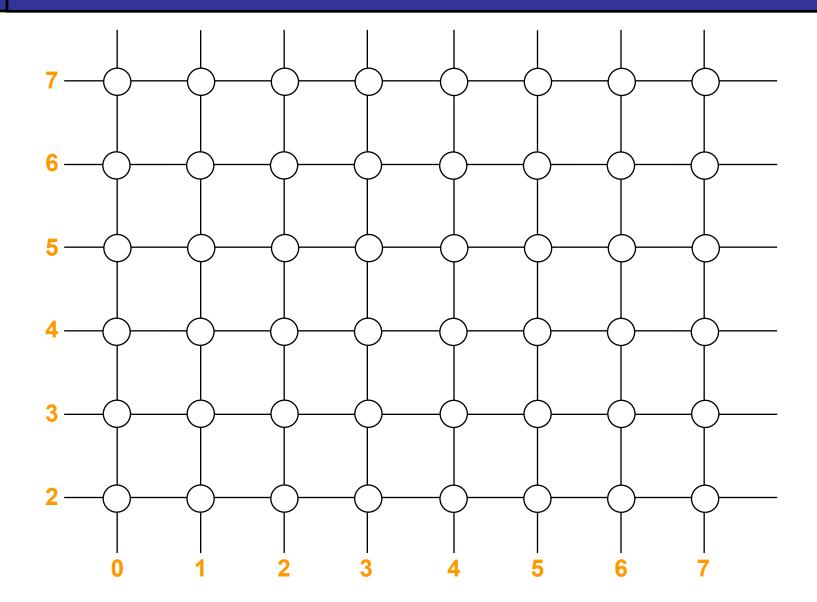
DDA Algorithm Example

Let's try out the following examples:





DDA Algorithm Example (cont...)



The DDA Algorithm Summary

The DDA algorithm is much faster than our previous attempt

 In particular, there are no longer any multiplications involved

However, there are still two big issues:

- Accumulation of round-off errors can make the pixelated line drift away from what was intended
- The rounding operations and floating point arithmetic involved are time consuming