
1

of

32
The Problem Of Scan Conversion

A line segment in a scene is defined by the

coordinate positions of the line end-points

x

y

(2, 2)

(7, 5)

2

of

32
The Problem (cont…)

How do we choose which pixels to turn on?

3

of

32
Considerations

Considerations to keep in mind:

– The line has to look good

• Avoid jaggies

– It has to be lightening fast!

• How many lines need to be drawn in a typical

scene?

• This is going to come back to bite us again and

again

4

of

32
Line Equations

Let’s quickly review the equations involved

in drawing lines

x

y

y0

yend

xendx0

Slope-intercept line

equation:

bxmy +=

where:

0

0

xx

yy
m

end

end

−

−
=

00 xmyb −=

5

of

32
A Very Simple Solution

We could simply work out the corresponding

y coordinate for each unit x coordinate

Let’s consider the following example:

x

y

(2, 2)

(7, 5)

2 7

2

5

6

of

32
A Very Simple Solution (cont…)

1

2

3

4

5

0

1 2 3 4 5 60 7

7

of

32
A Very Simple Solution (cont…)

x

y

(2, 2)

(7, 5)

2 3 4 5 6 7

2

5

5

3

27

25
=

−

−
=m

5

4
2

5

3
2 =−=b

First work out m and b:

Now for each x value work out the y value:

5

3
2

5

4
3

5

3
)3(=+=y

5

1
3

5

4
4

5

3
)4(=+=y

5

4
3

5

4
5

5

3
)5(=+=y

5

2
4

5

4
6

5

3
)6(=+=y

8

of

32
A Very Simple Solution (cont…)

Now just round off the results and turn on

these pixels to draw our line

3
5

3
2)3(=y

3
5

1
3)4(=y

4
5

4
3)5(=y

4
5

2
4)6(=y

0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

9

of

32
A Very Simple Solution (cont…)

However, this approach is just way too slow

In particular look out for:

– The equation y = mx + b requires the

multiplication of m by x

– Rounding off the resulting y coordinates

We need a faster solution

10

of

32
A Quick Note About Slopes

In the previous example we chose to solve

the parametric line equation to give us the y

coordinate for each unit x coordinate

What if we had done it the other way

around?

So this gives us:

where: and

m

by
x

−
=

0

0

xx

yy
m

end

end

−

−
= 00 xmyb −=

11

of

32
A Quick Note About Slopes (cont…)

Leaving out the details this gives us:

We can see easily that

this line doesn’t look

very good!

We choose which way

to work out the line

pixels based on the

slope of the line
0 1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

4
3

2
3)3(=x 5

3

1
5)4(=x

12

of

32
A Quick Note About Slopes

• If |m|<1, then for every integer value of x between

and excluding x1 and x2, calculate the

corresponding value of y using equation Δy = m

Δx & scan convert (x,y).

• If |m|>1, then for every integer value of y between

and excluding y1 and y2, calculate the

corresponding value of x using equation Δx =

Δy/m & scan convert (x,y).

• If |m|=1, Δx = Δy. In each case, a smooth line with

slope m is generated between the specific

endpoints.

13

of

32
The DDA Algorithm

The digital differential

analyzer (DDA) algorithm

takes an incremental

approach in order to

speed up scan conversion

Simply calculate yk+1

based on yk

The or ig ina l d i f fe rent ia l

analyzer was a physical

m a c h i n e d e v e l o p e d b y

Vannevar Bush at MIT in the

1930 ’s in order to solve

ordinary differential equations.

More i n fo rma t i on he re .

http://scoter2.union.edu/~hemmendd/Encyc/Articles/Difanal/difanal.html

14

of

32
The DDA Algorithm (cont…)

Consider the list of points that we

determined for the line in our previous

example:

 (2, 2), (3, 23/5), (4, 31/5), (5, 34/5), (6, 42/5), (7, 5)

Notice that as the x coordinates go up by

one, the y coordinates simply go up by the

slope of the line

This is the key insight in the DDA algorithm

15

of

32
The DDA Algorithm (cont…)

When the slope of the line is between -1 and 1

begin at the first point in the line and, by

incrementing the x coordinate by 1, calculate

the corresponding y coordinates as follows:

When the slope is outside these limits,

increment the y coordinate by 1 and calculate

the corresponding x coordinates as follows:

myy kk +=+1

m
xx kk

1
1 +=+

16

of

32
The DDA Algorithm (cont…)

Again the values calculated by the equations

used by the DDA algorithm must be rounded

to match pixel values

(xk, yk)
(xk+1, yk+m)

(xk, round(yk))

(xk+1, round(yk+m))

(xk, yk) (xk+ 1/m, yk+1)

(round(xk), yk)

(round(xk+ 1/m), yk+1)

17

of

32
DDA Algorithm Example

Let’s try out the following examples:

x

y

(2, 2)

(7, 5)

2 7

2

5

x

y (2, 7)

(3, 2)

2 3

2

7

18

of

32
DDA Algorithm Example (cont…)

7

2

3

4

5

6

1 2 3 4 5 60 7

19

of

32
The DDA Algorithm Summary

The DDA algorithm is much faster than our

previous attempt

– In particular, there are no longer any

multiplications involved

However, there are still two big issues:

– Accumulation of round-off errors can make

the pixelated line drift away from what was

intended

– The rounding operations and floating point

arithmetic involved are time consuming

	Slide 1: The Problem Of Scan Conversion
	Slide 2: The Problem (cont…)
	Slide 3: Considerations
	Slide 4: Line Equations
	Slide 5: A Very Simple Solution
	Slide 6: A Very Simple Solution (cont…)
	Slide 7: A Very Simple Solution (cont…)
	Slide 8: A Very Simple Solution (cont…)
	Slide 9: A Very Simple Solution (cont…)
	Slide 10: A Quick Note About Slopes
	Slide 11: A Quick Note About Slopes (cont…)
	Slide 12: A Quick Note About Slopes
	Slide 13: The DDA Algorithm
	Slide 14: The DDA Algorithm (cont…)
	Slide 15: The DDA Algorithm (cont…)
	Slide 16: The DDA Algorithm (cont…)
	Slide 17: DDA Algorithm Example
	Slide 18: DDA Algorithm Example (cont…)
	Slide 19: The DDA Algorithm Summary

