
DIGITAL IMAGE PROCESSING

Image Segmentation:
Thresholding

What is segmentation?

◻ Dividing the image into different regions.

🞑 Separating objects from background and giving them individual labels(ID numbers)

◻ The purpose of image segmentation is to partition an image into
meaningful regions with respect to a particular application

2

The Segmentation Problem

◻Segmentation attempts to partition the pixels of an image into groups that
strongly correlate with the objects in an image

◻Typically the first step in any automated computer vision application

3

Segmentation Examples

Im
a

g
e

s
 t
a

k
e

n
 f
ro

m
 G

o
n

z
a

le
z
 &

 W
o
o
d
s
,
D

ig
it
a

l
Im

a
g
e

 P
ro

c
e

s
s
in

g
 (

2
0

0
2
)

4

Wikipedia on segmentation

”In computer vision, Segmentation is the process of partitioning a digital
image into multiple segments”

”More precisely, image segmentation is the process of assigning a label to
every pixel in an image such that pixels with the same label share certain
visual characteristics.”

”Each of the pixels in a region are similar with respect to some characteristic
or computed property, such as color, intensity, or texture. Adjacent regions
are significantly different with respect to the same characteristic(s).”

5

Why segmentation?

◻ Usually image segmentation is an initial and vital step in a series of
processes aimed at overall image understanding

🞑 Segmentation is generally the first stage in any attempt to analyze or interpret an image
automatically.

◻ Segmentation bridges the gap between low-level image processing and
high-level image processing.

◻ Some kinds of segmentation technique will be found in any application
involving the detection, recognition, and measurement of objects in
images.

6

Why segmentation?

◻ The role of segmentation is crucial in most tasks requiring image analysis.

🞑 The success or failure of the task is often a direct consequence of the success or failure of
segmentation.

◻ Accurate segmentation of objects of interest in an image greatly facilitates
further analysis of these objects. For example, it allows us to:

🞑 Count the number of objects of a certain type.

🞑 Measure geometric properties (e.g., area, perimeter)

of objects in the image.

🞑 Study properties of an individual object (intensity,

texture, etc.)

7

Segmentation – difficulty

◻ Segmentation is often the most difficult problem to solve in image
analysis.

🞑 There is no universal solution!

◻ A reliable and accurate segmentation of an image is, in general, very
difficult to achieve by purely automatic means

”Since there is no general solution to the image segmentation problem, these [general
purpose] techniques often have to be combined with domain knowledge in order to
effectively solve an image segmentation problem for a problem domain.” - wikipedia

8

Targeted Segmentation

◻ Segmentation is an ill-posed problem...

What is a correct segmentation of this image?

9

Targeted Segmentation

◻ ...unless we specify a segmentation target.

10

Dilemma

input result 1 result 2

What do we mean by “DIFFERENT” objects?

Another example: when we look at trees at a close distance, we consider

each of them as a different object; but as we look at trees far away, they

merge into one coherent object (woods)

11

Targeted Segmentation

◻ A segmentation can also be defined as a mapping from the set of pixels to
some application dependent target set, e.g.

🞑 {Object, Background}

🞑 {Humans, Other objects}

🞑 {1,2,3,4,...}

🞑 {Healthy tissue, Tumors}

◻ To perform accurate segmentation, we (or our algorithms) need to
somehow know how to differentiate between different elements of the
target set.

12

Segmentation Algorithms

◻ Segmentation algorithms are based on one of two basic properties of color,
gray values, or texture:

◻ Similarity

🞑 Partition an image into regions that are similar according to a predefined criteria.

◻ Discontinuity
🞑 Detecting boundaries of regions based on local discontinuity in intensity.

13

EE465: Introduction to Digital Image Processing Copyright

Xin Li 14

Overview of Segmentation Techniques

Texture-based

Edge-based

Color-based

Disparity-based

Motion-based

EE465: Introduction to Digital Image Processing Copyright

Xin Li 15

Edge-based Techniques

Edge

detection

Segmentation

by boundary

detection

Classification

and analysis

EE465: Introduction to Digital Image Processing Copyright

Xin Li 16

Region-Filling

EE465: Introduction to Digital Image Processing Copyright

Xin Li 17

Texture-based Techniques

What is Texture?

No one exactly knows.

In the visual arts, texture

is the perceived surface quality

of an artwork.

Segmentation Algorithms

◻ We will study Four types of algorithms

🞑 Thresholding

■ Based on pixel intensities (shape of histogram is often used for automation).

🞑 Edge-based

■ Detecting edges that separate regions from each other.

🞑 Region-based

■ Grouping similar pixels (with e.g. region growing, split & merge).

🞑 Watershed segmentation

■ Find regions corresponding to local minima in intensity.

→ Similarity

→ Similarity

→ Discontinuity

→ Discontinuity

18

Thresholding

◻ Simplest, widely used for image segmentation.

◻ It is useful in discriminating foreground from the background.

◻ By selecting an adequate threshold T, the grayscale image can be converted to
binary image.

◻ mathematically :

19

Thresholding Example

◻ Imagine a poker playing robot that needs to visually interpret the cards in
its hand

Original Image Thresholded Image

20

But Be Careful

◻ If you get the threshold wrong the results can be disastrous

Threshold Too Low Threshold Too High

21

Thresholding - methods

◻ Global threshold
The same value is used for the whole image.

◻ Optimal global threshold
Based on the shape of the current image histogram. Searching for valleys,
Gaussian distribution etc.

◻ Local (or dynamic) threshold
The image is divided into non-overlapping sections, which are thresholded
one by one.

22

Global Thresholding

◻ Partition the image histogram using a single global threshold

◻ Success strongly depends on how well the histogram can be partitioned

◻ We chose a threshold T midway between the two gray value distributions.

23

How to find a global threshold

◻ The basic global threshold, T, is calculated

◻ as follows:

1. Select an initial estimate for T (typically the average grey level in the
image)

2. Segment the image using T to produce two groups of pixels:

G1 : pixels with grey levels >T

G2 : pixels with grey levels ≤ T

3. Compute the average grey levels of pixels in G1 to give μ1 and G2 to
give μ2

24

How to find a global threshold

4. Compute a new threshold value:

5. Repeat steps 2 – 4 until the difference in T in successive iterations is
less than a predefined limit T∞

25

Global threshold - Example

26

Global threshold - Example

Image after

segmentation

Image histogram

Grayscale rice image

27

Global threshold

◻ This algorithm works very well for finding thresholds when the histogram is
suitable (bi-modal)

28

Thresholding Example 2

29

Optimum Global threshold

◻ Otsu’s Method

◻ Based on a very simple idea: Find the threshold that minimizes the
weighted within-class variance.

◻ This turns out to be the same as maximizing the between-class variance.

◻ Operates directly on the gray level histogram [e.g. 256 numbers, P(i)], so
it’s fast (once the histogram is computed).

30

Otsu’s Method

◻ {0,1,2,…,L-1} , L means gray level intensity

• Select a threshold , and use it to

classify C1: intensity in the range [0, k] and C2: [k+1, L-1]

,

M*N = total number of pixel.

ni = number of pixels with intensity i

pi = ni / MN, probability of intensity i

Class Probability

Class mean

31

Otsu’s Method

global variance

Class variance

Minimize: within Class variance

Global mean

Between Class variance

32

Otsu’s Method

33

Otsu’s Method

34

it is between-class variance

it is a measure of separability between class.

For x = 0,1,2,…,M-1

and y = 0,1,2…,N-1.

Otsu’s Method

Cumulative mean upto kwhere

35

Otsu’s Method

◻ The criterion function involves between-classes variance to the total variance is
defined as:

η = σB
2 / σG

2

◻ All possible thresholds are evaluated in this way, and the one that maximizes η

is chosen as the optimal threshold

36

Otsu’s Method

37

Otsu’s Method

38

Otsu - Example

m_g 2.3611

i n_i P_i P1 i*p_i m (m - P1*m_g)^2 sigma2_B

0 8 0.2222 0.2222 0.0000 0.0000 0.2753 1.5928

1 7 0.1944 0.4167 0.1944 0.1944 0.6231 2.5635

2 2 0.0556 0.4722 0.1111 0.3056 0.6552 2.6287

3 6 0.1667 0.6389 0.5000 0.8056 0.4941 2.1417

4 9 0.2500 0.8889 1.0000 1.8056 0.0860 0.8705

5 4 0.1111 1.0000 0.5556 2.3611 0.0000 #DIV/0!

36
39

Gaussian noise added

40

Otsu’s Method – effect of noise and smoothing

41

Multi-Valued Thresholding

◻ Single value thresholding only works for bimodal histograms

◻ Images with other kinds of histograms need more than a single threshold

42

Multi-Valued Thresholding

because the separability measure on which it is based also extends to an arbitrary number of

classes (Fukunaga [1972]). In the case of K classes, c1, c2, c3 , …, K, the between-class

variance generalizes to the expression

43

Multi-Valued Thresholding

44

MAXIMUM ENTROPY THRESHOLDING

Section 11.1.5

Digital Image Processing: An Algorithmic Introduction Using Java -
Wilhelm Burger • Mark J. Burge

Maximum Entropy Thresholding

◻ The entropy statistic is high if a variable is well distributed over the available range, and low if
it is well ordered and narrowly distributed: specifically, entropy is a measure of disorder, and
is zero for a perfectly ordered system.

◻ The concept of entropy thresholding is to threshold at an intensity for which the sum of the
entropies of the two intensity probability distributions thereby separated is maximized.

◻ The reason for this is to obtain the greatest reduction in entropy—i.e., the greatest increase
in order—by applying the threshold: in other words, the most appropriate threshold level is
the one that imposes the greatest order on the system, and thus leads to the most
meaningful result

46

Maximum Entropy Thresholding

Z = {0, 1, . . . , K−1} ,

possible intensity values g = 0, . . . , K −1

P(0) = p(0) and P(K −1) = 1.

Entropy of image

47

Maximum Entropy Thresholding

Given a particular threshold q (with 0 ≤ q < K-1), the estimated

probability distributions for the resulting partitions C0and C1

overall entropy is to be maximized
48

Maximum Entropy Thresholding

Rearranging

49

Maximum Entropy Thresholding

the values S0(q), S1(q) are obtained

from precalculated tables S0, S1

50

Maximum Entropy Thresholding

51

MET

52

Maximum Entropy Thresholding

Graphs in (e–h) show

the background entropy H0(q)

(green), foreground entropy H

1(q) (blue) and overall entropy

H01(q) = H0(q) + H1(q)

(red)

53

Exercise – Otsu

54

Exercise - MET

55

How can we choose the minimum error threshold?

error committed by misclassifying object pixels as

background pixels

error committed by misclassifying background

pixels as object pixels

Fraction of the pixels that make up the object is θ, and, by

inference, the fraction of the pixels that

make up the background is 1 − θ. Then, the total error is

56

How can we choose the minimum error threshold?

❑ The grey values of the object and the background pixels are distributed according to

the probability density function

with x0 = 1 and a = 1 for the objects, and x0 = 3 and a

= 2 for the background. Sketch the two probability

density functions.

❑ If one-third of the total number of pixels are object

pixels, determine the fraction of misclassified object

pixels by optimal thresholding.

57

How can we choose the minimum error threshold?

58

How can we choose the minimum error threshold?

59

What is the minimum error threshold when object and
background pixels arenormally distributed?

60

What is the minimum error threshold when object and
background pixels arenormally distributed?

61

62

Problems With Single Value Thresholding

◻ Single value thresholding only works for bimodal histograms

◻ Images with other kinds of histograms need more than a single threshold

63

Single Value Thresholding - Illumination

◻ Uneven illumination can really upset a single valued thresholding scheme

64

Single Value Thresholding - Illumination

◻ Uneven illumination or low light

65

Adaptive Thresholding

◻ Partitioning

◻ An approach to handling situations in which single value thresholding will
not work is to divide an image into sub images and threshold these
individually

◻ Since the threshold for each pixel depends on its location within an image
this technique is said to adaptive

66

Adaptive Thresholding - partitioning

◻ As can be seen success is mixed

◻ It is work when the objects of interest and the background occupy regions
of reasonably comparable size. If not , it will fail.

◻ But, we can further subdivide the troublesome sub images for more
success

67

Adaptive Thresholding Example (cont…)

◻ These images show the troublesome
parts of the previous problem further
subdivided

◻ After this sub division successful
thresholding can be achieved

68

Adaptive Thresholding

◻ Bernsen’s Method

This is done as long as the local contrast
c(u, v) = Imax(u, v) - Imin(u, v) is above some

predefined limit cmin

local minimum (green), maximum (red),
and the actual threshold (blue) 69

Adaptive Thresholding

◻ Niblack’s Method

🞑 based on local image properties

🞑 threshold Q(u, v) is varied across the image as a function of the local intensity
average μR(u, v) and standard deviation σR(u, v)

; κ ≥ 0

▪ Or, to avoid low-amplitude noise (“ghosting”)

▪ the structures of interest are darker than the background (as, e.g., in typical OCR applications), one

could either work with inverted images or modify the calculation of the threshold

70

Adaptive Thresholding

Returns the local mean and variance of the image

pixels I(i, j) within the disk-shaped region with radius

r around position (u, v).

71

Adaptive Thresholding - Niblack’s Method

◻

72

Adaptive Thresholding

◻ Niblack’s Method - modification

73

Adaptive Thresholding

Using moving average

◻ It is based on computing a moving average along scan lines of an image.

◻ denote the intensity of the point at step k+1.

n denote the number of point used in the average.

◻ is the initial value.

◻ ,where b is constant and is the moving average at point (x,y)

74

Adaptive Thresholding

◻ moving average

◻ Works well, when objects of interest are small (thin) with respect to the image
size e.g. typed of hand written text

N=20, b=0.5

75

Adaptive Thresholding

◻ moving average

◻ Works well, when objects of interest are small (thin) with respect to the image
size e.g. typed of hand written text

76

Summary

◻ In this lecture we have begun looking at segmentation, and in particular
thresholding

◻ We saw the basic global thresholding algorithm and its shortcomings

◻ We also saw a simple way to overcome some of these limitations using
adaptive thresholding

77

REGION-BASED SEGMENTATION

Segmentation

◻ An image domain X must be segmented in N different regions R(1),…,R(N)

◻ The segmentation rule is a logical predicate of the form P(R)

◻ Image segmentation with respect to predicate P partitions the image X
into subregions Ri, i =1,…,N such that

X = i=1,..N U Ri

Ri ∩ Rj = 0 for i ≠ j

P(Ri) = TRUE for i = 1,2,…,N

P(Ri U Rj) = FALSE for i ≠ j

79

Segmentation

◻ The segmentation property is a logical predicate of the form P(R,x,t)

◻ x is a feature vector associated with region R

◻ t is a set of parameters (usually thresholds). A simple segmentation rule
has the form:

P(R) : I(r,c) < T for all (r,c) in R

80

Segmentation

◻ In the case of color images the feature vector x can be three RGB image
components (R(r,c),G(r,c),B(r,c))

◻ A simple segmentation rule may have the form:

P(R) : (R(r,c) <T(R)) && (G(r,c)<T(G))&&

(B(r,c) < T(B))

81

Region Growing (Merge)

◻ A simple approach to image segmentation is to start from some pixels
(seeds) representing distinct image regions and to grow them, until they
cover the entire image

◻ For region growing we need a rule describing a growth mechanism and a
rule checking the homogeneity of the regions after each growth step

82

Region Growing

◻ The growth mechanism – at each stage k and for each region Ri(k), i =
1,…,N,

🞑 Check if there are unclassified pixels in the 8-neighbourhood of each pixel of the
region border

◻ Before assigning such a pixel x to a region Ri(k),we check if the region
homogeneity:

P(Ri(k) U {x}) = TRUE , is valid

◻ Selection of similarity criteria: color, descriptors (gray level + moments /
texture)

83

Region Growing

◻ Choosing a seed pixel:

🞑 Preferably provided by the user. A good seed can be drawn from the peak of
the object histogram

◻ Minimum area thresholding:

🞑 No region will be smaller than this threshold in the segmented image

◻ Similarity threshold:

🞑 If a pixel and a region (or region A and region B) are considered similar enough
a union is made, Otherwise a new region is formed

🞑 High threshold value – easy for new pixels to get accepted to the region

🞑 Low threshold value – hard for new pixels to get accepted
84

Region Growing Predicate

◻ Similarity check example::

◻ At each iteration, and for each region Ri Compute arithmetic mean mi and standard

deviation σi having n =|Ri| pixels:

◻ If the regions adhere the similarity (homogeneity) condition than we can unite them

◻ The predicate P can be used to decide if the merging of the two regions Ri, Rj is allowed

85

average intensity variance

color texture

Motion

shape size

etc…

Region growing

◻ Other homogeneity criteria (with more features) can be
considered

86

Split

◻ The opposite approach to region growing is region splitting.

◻ It is a top-down approach

◻ Briefly-

1. it starts with the assumption that the entire image is homogeneous

2. If this is not true (by the homogeneity criterion, P), the image is split into four
sub images

3. This splitting procedure is repeated recursively until we split the image into
homogeneous regions

Split & merge
(top
down)

87

Split

◻ If the original image is square N x N, having dimensions that are powers of 2(N =
2n):

◻ All regions produced but the splitting algorithm are squares having dimensions
M x M , where M is a power of 2 as well.

◻ Since the procedure is recursive, it produces an image representation that can
be described by a tree whose nodes have four sons each

◻ Such a tree is called a Quadtree.

88

Split

Quadtree

R0 R1

R2
R3

R0

R1

R00 R01 R02 R04

89

Split

◻ Disadvantage

🞑 They create regions that may be adjacent and homogeneous, but not merged.

◻ Improvement - Split and Merge

🞑 An iterative algorithm that includes both splitting and merging at each iteration:

90

Split / Merge

◻ Briefly-

1. it starts with the assumption that the entire image is homogeneous

2. If this is not true (by the homogeneity criterion), the image is split
into four sub images

3. This splitting procedure is repeated recursively until we split the
image into homogeneous regions

4. Merging phase: If 2 adjacent regions are homogenous, they are
merged

5. Repeat step 4 until no further merging is possible

91

Split / Merge

1. Split any region Ri into 4 disjoint quadrants for which P(Ri) = FALSE

2. Merge any adjacent region Ri and Rj for which P(Ri U Rj) = TRUE

3. Repeat step 1 and 2 until no further splitting or merging is possible.

◻ The split and merge algorithm produces more compact regions than the
pure splitting algorithm

92

Split / Merge

Iteration 1

Iteration 2 Iteration 3

93

Split / Merge

94

Split / Merge

95

Split / Merge

96

Split / Merge

◻ Try this

97

Applications

◻ 3D – Imaging : A basic task in 3-D image processing is the segmentation of an
image which classifies voxels/pixels into objects or groups.

◻ 3-D image segmentation makes it possible to create 3-D rendering for multiple
objects and perform quantitative analysis for the size, density and other
parameters of detected objects.

◻ Several applications in the field of Medicine like magnetic resonance imaging
(MRI).

98

Results – Region grow

99

Results – Region Split

100

Results – Region Split and Merge

101

Results – Region growing

102

Results – Region Split

103

Results – Region Split and Merge

104

Problems with regional segmentation

◻ There are problems with regional segmentation of any form:

🞑 ``Meaningful'' regions may not be uniform: surface properties of a solid body will
vary in brightness or colour dependent on the existence of slowly varying gradients
due to lighting conditions.

■ Lighting effects or curvature affect the appearance, e.g. a sphere illuminated by a point
light source may have intensities varying from pure white to black, yet is a single surface.

🞑 It is very unusual in practice for an image to be composed of uniform regions of
similar intensity, or colour, or texture etc.

🞑 Regional segmentation works best with binary data as the limited range of values
lead to more uniform regions.

105

Problems with regional segmentation

◻ In practice, boundary segmentation is much more widely applied than
regional segmentation for several reasons

🞑 Algorithms are usually less complex: they tend to use local properties and software
and hardware implementations are readily available.

🞑 Humans may use edge detection: there is evidence of links between edge detection
and early human visual processing, which lead to the observation that contoured
images are more easily identified than regional images, particularly when degraded
in some form.

🞑 Edges are often more useful in matching: as finding regions or edges is often
preliminary to identifying objects, it is important that edges have an easier model
description (as lines).

106

Problems with regional segmentation

107

EDGE BASED SEGMENTATION

Edge-based segmentation

◻ Edge-based methods center around contour detection

◻ General workflow

1. Detect edges, i.e., mark each pixel as ”edge” or ”not edge”.

1. Divide the image into regions, based on the detected edges. (Edge linking, Hough
transform)

◻ Weakness in connecting broken contour lines make them prone to failure in
the presence of blurring.

This part is non-trivial!

109

Detection Of Discontinuities

◻ There are three basic types of grey level discontinuities that we tend to
look for in digital images:

🞑 Points

🞑 Lines

🞑 Edges

◻ We typically find discontinuities using masks and correlation

110

• Point detection can be achieved simply using the

mask below:

• Points are detected at those pixels in the

subsequent filtered image that are above a set

threshold

Point Detection

111

Point Detection (cont…)

X-ray image of

a turbine blade

Result of point

detection

Result of

thresholding

112

Line Detection

◻ The next level of complexity is to try to detect lines

◻ The masks below will extract lines that are one pixel thick and running in a
particular direction

113

Line Detection (cont…)

Binary image of a wire

bond mask

After

processing

with -45° line

detector

Result of

thresholding

filtering result

114

Edge Detection

◻ An edge is a set of connected pixels that lie on the boundary between two
regions

◻ Edge models

115

Edges & Derivatives

◻ We have already spoken
about how derivatives
are used to find
discontinuities

◻ 1st derivative tells us
where an edge is

◻ 2nd derivative can
be used to show
edge side

116

Intensity profile

Source: D. Hoiem
117

With a little Gaussian noise

Gradient

Source: D. Hoiem
118

Effects of noise

◻ Consider a single row or column of the image

🞑 Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz

119

Derivatives & Noise

◻ Derivative based edge detectors are extremely sensitive to noise

◻ We need to keep this in mind

120

Effects of noise

• Difference filters respond strongly to noise

🞑 Image noise results in pixels that look very different from their neighbors

🞑 Generally, the larger the noise the stronger the response

• What can we do about it?

Source: D. Forsyth
121

Solution: smooth first

• To find edges, look for peaks in

f

g

f * g

Source: S. Seitz
122

• Differentiation is convolution, and convolution is associative:

• This saves us one operation:

Derivative theorem of convolution

f

Source: S. Seitz
123

Derivative of Gaussian filter

* [1 -1] =

124

Discrete Derivative in 1D

125

1D Discrete derivatives & Filters

Backward

Forward

Central [1 0 -1]

[-1 1 0]

[0 1 -1]

derivate filters

126

Discrete derivate in 2D

127

Discrete derivate in 2D

128

2D discrete derivative filters

Normally, don’t write

129

3x3 image gradient filters

Prewitt operator

130

Sobel Operator

Gaussian

smoothing

differentiation

Sobel operation = Smoothing + differentiation

131

Other Edge operators

Kirsch compass operator
132

Simple Edge Detector

◻ Gradient based

🞑 Compute gradient magnitude

■ Use Sobel or any other edge operator

■ Optionally smooth before computing gradient

🞑 Apply thresholding

133

Simple Edge Detector – Sobel based

134

Simple Edge Detector – Sobel based

Gy

Gx Magnitude

too much

detail

135

Edge Detection Example

136

Edge Detection Example

Horizontal Gradient Component

137

Edge Detection Example

Vertical Gradient Component

138

Edge Detection Example

Combined

139

Edge Detection Problems

◻ Often, problems arise in edge detection in that there are is too much
detail

◻ For example, the brickwork in the previous example

◻ One way to overcome this is to smooth images prior to edge detection

140

◻ With Smoothing - 5x5 average filter

Gy

Gx Magnitude

Simple Edge Detector – Sobel based

141

Simple Edge Detector - threshold

thresholdsmall large

50 80 100

142

Simple Edge Detector

◻ Issues

🞑 Poor Localization (Trigger response in multiple adjacent pixels)

🞑 Thresholding value favors certain directions over others

🞑 Sobel can miss oblique edges more than horizontal or vertical edges

🞑 False negatives

143

Combining Gradient with thresholds

Introduction to Digital Image Processing Copyright Xin Li

thresholdsmall large

144

Laplacian Edge Detection

◻ We encountered the 2nd-order derivative based Laplacian filter already

f f’ f’’

zero crossing

Laplacian

operator
image zero-crossing

edge

map
f(x,y) g(x,y) E(x,y)

145

Examples

zero-crossingsoriginal image

Question: why is it so sensitive to noise (many false alarms)?

Answer: a sign flip from 0.01 to -0.01 is treated the same as

from 100 to -100

Laplacian Edge Detection

146

Ideas to Improve Robustness (SS)

◻ The Laplacian is typically not used by itself as it is too sensitive to noise

◻ Linear filtering
🞑 Use a Gaussian filter to smooth out noise component → Laplacian of Gaussian (LoG)

filter (Marr – Hildreth operator)

◻ Spatially-adaptive (Nonlinear) processing
🞑 Apply different detection strategies to smooth areas (low-variance) and non-smooth

areas (high-variance) → Robust Laplacian edge detector

◻ Return single response to edges (not multiple edge pixels)
🞑 Hysteresis thresholding → Canny’s edge detector

147

Laplacian Of Gaussian

◻ The Laplacian of Gaussian (or Mexican hat) filter uses the Gaussian for
noise removal and the Laplacian for edge detection

148

Laplacian Of Gaussian

Laplacian

operator
image edge

map

Gaussian

LPF (σ)

Pre-filtering: attenuate the noise sensitivity of the Laplacian

f(x,y) g(x,y) E(x,y)

Better than

Laplacian

alone but still

sensitive due to

zero crossing

149

Robust Laplacian-based Edge Detector

Laplacian

operator
image zero

crossing?

estimate

local variance

σ2>th

σ2

not an

edge point

No

yes

No

not an

edge point

edge

point

150

Robust Laplacian-based Edge Detector

More robust but return multiple edge pixels

(poor localization)

151

Designing an edge detector

◻ Criteria for an “optimal” edge detector:

🞑 Good detection: must minimize the probability of false positives (detecting spurious edges caused by noise),
as well as that of false negatives (missing real edges)

🞑 Good localization: the edges detected must be as close as possible to the true edges

🞑 Single response: must return one point only for each true edge point; that is, minimize the number of local
maxima around the true edge

152

Canny Edge Detector

◻ most widely used edge detector in computer vision

◻ Low error rate of detection

🞑 Well match human perception results

◻ Good localization of edges

🞑 The distance between actual edges in an image and the edges found by a
computational algorithm should be minimized

◻ Single response

🞑 The algorithm should not return multiple edges pixels when only a single one exists

153

Original image

Smoothing by Gaussian convolution

Differential operators along x and y axis

Non-maximum suppression

finds peaks in the image gradient

Hysteresis thresholding locates edge strings

Edge map

Flow-chart of Canny Edge Detector*
(J. Canny’1986)

Generally done

in one step

Also done

in one step

154

Example

original image (Lena)

155

Derivative of Gaussian filter

x-direction y-direction

156

Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude

157

Get Orientation at Each Pixel

◻ Get orientation

theta = atan2(Gy, Gx)

158

Non-maximum suppression

◻ Edge occurs where gradient reaches a maxima

◻ Suppress non-maxima gradient even if it passes threshold

◻ Only eight angle directions possible

🞑 Suppress all pixels in each direction which are not maxima

🞑 Do this in each marked pixel neighborhood

159

Non-maximum suppression

At q, we have a maximum if the value is larger

than those at both p and at r.

q= current pixel (x,y),

p, r = neighbor positions along gradient direction

Interpolate to get magnitude of these values.

160

Non-maximum suppression – avoid tan function

y

x

Grad

Edge

00

2

2

1

1

3

3

161

Non-maximum suppression – avoid tan function

162

Sidebar: Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation163

http://en.wikipedia.org/wiki/Bilinear_interpolation

Before Non-max Suppression

164

After non-max suppression

165

Before Non-max Suppression

166

After non-max suppression

167

Hysteresis thresholding

◻ Threshold at low/high levels to get weak/strong edge pixels

◻ Do connected components, starting from strong edge pixels

168

Hysteresis Threshold

◻ Canny uses hysteresis threshold to fill up the narrow gap along the edge.

◻ Uses two threshold - high threshold T_h and low threshold T_l.

◻ Pixels with gray values greater than T_h is set as the initial edge pixels

◻ Pixels are set as background if their values are lower than T_l.

169

Hyteresis Threshold

◻ A following recursive process takes charge of pixels lying between T_h and
T_l.

🞑 Let, call them as vibrating pixels.

🞑 The recurs checks 8-adjancent neighbors of each initial edge pixel to see whether
there are vibrating pixels.

🞑 Vibrating pixels will be added to the initial edge pixel set.

🞑 This process will go on until all the initial edge pixels have been recursed, and
vibrating pixels that have not been visited will be set as background pixel.

170

Hysteresis thresholding

Single

threshold
Hysteresis

threshold

171

Canny Algorithm

172

Canny Algorithm

173

Canny Algorithm

174

Canny Algorithm

175

Canny Algorithm

176

canny1lena canny2

original image vertical edges horizontal edges
canny3 canny4 canny5

norm of the gradient after NMS after H. Thresholding

Canny Edge Detector Example

177

http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny1.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/lena.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny2.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny3.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny4.gif
http://robotics.eecs.berkeley.edu/~sastry/ee20/images/canny5.gif

Canny – effect of sigma

178

Canny – effect
of sigma

179

Edge-based segmentation

◻ Edge-based methods center around contour detection

◻ General workflow

1. Detect edges, i.e., mark each pixel as ”edge” or ”not edge”.

1. Divide the image into regions, based on the detected edges. (Edge linking, Hough
transform)

◻ Weakness in connecting broken contour lines make them prone to failure in
the presence of blurring.

This part is non-trivial!

180

An edge is not a line...

How can we detect lines ?

181

Finding lines in an image

◻ Option 1:

🞑 Search for the line at every possible position/orientation

🞑 What is the cost of this operation?

◻ Option 2:

🞑 Use a voting scheme: Hough transform

182

Hough Transform

◻ Performed after Edge Detection

◻ It is a technique to isolate the curves of a given shape / shapes in a given image

◻ Classical Hough Transform can locate regular curves like straight lines, circles,
parabolas, ellipses, etc.

🞑 Requires that the curve be specified in some parametric form

◻ Generalized Hough Transform can be used where a simple analytic description of
feature is not possible

183

Hough Transform

◻ Advantages

🞑 The Hough Transform is tolerant of gaps in the edges

🞑 It is relatively unaffected by noise

🞑 It is also unaffected by occlusion in the image

184

Hough Transform

◻ Mathematical model of a line:

x

y Y = mx + c

P(x1,y1)

P(x2,y2)

Y1=m x1+c

Y2=m x2+c

YN=m xN+c

185

Hough Transform

◻ Image and Parameter Spaces

x

y Y = mx + c Y1=m x1+c

Y2=m x2+c

YN=m xN+c

Y = m’x + c’

Image Space Parameter Space

intercept

slope

c

m

c’

m’

Line in Img. Space ~ Point in Param. Space

186

Hough Transform

Y1=m2 x1+c2

Image space

Fix (m,c), Vary (x,y) - Line

Fix (x1,y1), Vary (m,c) – Lines thru a Point

Y = mx + c

x

y

P(x1,y1)

◻ Image and Parameter Spaces

Image space

Y1=m1 x1+c1

Y1=mn x1+cn

:

187

Hough Transform

Can be re-written as: c = -x1 m + y1y1=m x1+c

Parameter space

Fix (-x1,y1), Vary (m,c) - Line

◻ Image and Parameter Spaces

Parameter Space

intercept

slope

c = -x1 m + Y1

188

Hough Transform

◻ Image and Parameter Spaces
🞑 Given an edge point / pixel, there is an infinite number of lines passing through it

(Vary m and c).

■ These lines can be represented as a single line in parameter space.

Parameter Space

intercept

slope

c

m

x

y c = (-x) m + y

P(x,y)

189

Hough Transform

◻ Image and Parameter Spaces

🞑 Given a set of collinear edge points, each of them have associated a line in
parameter space.

■ These lines intersect at the point (m′,c′) corresponding to the parameters of the line in
the image space.

Parameter Space

intercept

slope

c'

m'

A(x1,y1)

B(x2,y2)
C(x3,y3)

x

y

Image Space
190

Hough Transform

◻ Image Space

🞑 Lines

🞑 Points

🞑 Collinear points

◻ Parameter Space

🞑 Points

🞑 Lines

🞑 Intersecting lines

Image and Parameter Spaces

191

Hough Parameterization

◻ Practical Issues

🞑 The slope of the line is -∞<m<∞, parameter space is INFINITE

🞑 The representation y = mx + c does not express lines of the form x = k

◻ Solution: Use the “Normal”/ polar equation of a line:

x

y
Y = mx + c r = x cosθ + y sinθ

r

θ

P(x,y)
θ Is the line orientation

r Is the distance between
the origin and the line

192

Hough Parameterization

r = x cosθ+y sinθ

x

y
Y = mx + c

r

θ

a

b

193

Consequence:

◻ A Point P(x, y) in Image Space is now represented as a
SINUSOID in the parameter space

🞑 r(θ) = x cosθ + y sinθ

◻ Use the parameter space (r, θ)

◻ The new space is FINITE

🞑 0 < r < D , where D is the image diagonal.

🞑 0 < θ < π

◻ The new space can represent all lines

🞑 Y = k is represented with r = k, θ=90

🞑 X = k is represented with r = k, θ=0

194

r,θ space
◻ In (slope, intercept) space

🞑 point in image space == line in (m,c) space

◻ In (r,θ) space

🞑 point in image space == sinusoid in (r,θ) space

🞑 where sinusoids overlap, accumulator = max

🞑 maxima still = lines in image space

◻ Practically, finding maxima in accumulator is non-trivial

🞑 often smooth the accumulator for better results

195

Hough transform

• An early type of voting scheme

• General outline:

🞑 Discretize parameter space into bins

🞑 For each feature point in the image, put a vote in every bin in the parameter space that could have generated
this point

🞑 Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc.

Int. Conf. High Energy Accelerators and Instrumentation, 1959

Image space Hough parameter space

196

x

y

thet
a

r

x

y r
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2
2 1 0 1 3 3

thet
a

Hough transform

197

Hough Transform Algorithm

198

Hough Transform Algorithm

Increment accumulator cell A(i,j) by one

The line parameters θi and rj for a given

accumulator position (i, j) can be calculated

as

199

Hough Transform
Algorithm

m×

n

200

Hough Transform
Algorithm

m×

n

201

Hough Transform
Algorithm

m×

n

202

Hough Transform Algorithm

Input: edge image (E(x,y)=1 for edgels)

1. Discretize r (<D) in increments of dρ

Discretize θ (<π) in increments of dθ (total# T) , and

Let A(R,T) be an accumulator array, initialized to 0.

2. For each pixel E(x,y)=1 and For t=1,2,…T do

i. θ =t * dθ

ii. ρ = x cos(θ) + y sin(θ)

iii. Find closest integer r corresponding to ρ

iv. Increment counter A(r,t) by one i.e. A(r,t) = A(r,t)

+1203

Hough Transform Algorithm

3. Compute the value(s) of (r, θ) by finding A[r, t] is maximum, where θ =

t * dθ

4. The detected line in the image space is given by

r = x cosθ+y sinθ

They are now constant

204

features votes

Hough Transform - Basic illustration

205

features votes

Hough Transform - Basic illustration

206

Hough Transform - issues

Using only non max suppression

207

Hough Transform - issues

Threshold operation using 50% of the maximum

value

208

Square

Hough Transform- Other shapes

209

Hough Transform- Real World Example

Original Edge Detection Found Lines

Parameter Space

210

Hough Transform - Speed Up

◻ If we know the orientation of the edge – usually available from the edge
detection step

🞑 We fix theta in the parameter space and increment only one counter!

🞑 We can allow for orientation uncertainty by incrementing a few counters around the
“nominal” counter.

211

Hough Transform - Bias compensation

◻ if we only search the accumulator array for maximal values, it is likely that
we will completely miss short line segments

Amax(i, j) = maximum number of image points

possible for a line with the corresponding

parameters

212

Hough Transform - Line endpoints

◻ For this, every cell of the accumulator array is supplemented with two
additional coordinate pairs

213

Hough Transform – Modified accumulation

◻ Due to the discrete nature of the image and accumulator coordinates,

🞑 rounding errors usually cause the parameter curves not to intersect in a single
accumulator cell, even when the associated image lines are exactly straight

◻ for a given angle θ = i · dθ, increment

🞑 not only the main accumulator cell A(i, j)

🞑 but also the neighboring cells A(i, j−1) and A(i, j + 1), with different weights.

214

Hough Transform- Effect of noise

◻ Peak gets fuzzy and hard to locate

🞑 The resulting scattering of points, or point clouds, are first coalesced into regions
using a technique such as a morphological closing operation

🞑 Next the remaining regions must be localized, for instance using the region-finding
technique,

🞑 and then each region’s centroid can be utilized as the (noninteger) coordinates for the
potential image space line.

215

Effect of noise

• Number of votes for a line of 20 points with increasing noise:

216

Random points

◻ Uniform noise can lead to spurious peaks in the array
features votes

217

Random points

• As the level of uniform noise increases, the maximum number of votes
increases too:

218

Finding Circles by Hough Transform

Equation of Circle:

If radius is known:

Accumulator Array

(2D Hough Space)

219

Finding Circles by Hough Transform

Equation of Circle:

If radius is not known: 3D Hough Space!

Use Accumulator array

What is the surface in the hough space?

220

Using Gradient Information
• Gradient information can save lot of

computation:

Edge Location

Edge Direction

Need to increment only one point in Accumulator!!

Assume radius is known:

221

Real World Circle Examples

Crosshair indicates results of Hough transform,

bounding box found via motion differencing.

222

Finding Coins

Original Edges (note noise)

223

Finding Coins (Continued)

Penn
y

Quarters

224

Finding Coins (Continued)

Coin finding sample images
from: Vivek Kwatra

Note that because
the quarters and
penny are different
sizes, a different
Hough transform
(with separate
accumulators) was
used for each circle
size.

225

Generalized Hough Transform

• Model Shape NOT described by

equation

226

Generalized Hough Transform

• Model Shape NOT described by

equation

227

Generalized Hough Transform

Find Object Center given edges

Create Accumulator Array

Initialize:

For each edge point

For each entry in table, compute:

Increment Accumulator:

Find Local Maxima in

228

229

Hough Transform: Comments

• Works on Disconnected Edges

• Relatively insensitive to occlusion

• Effective for simple shapes (lines, circles, etc)

• Trade-off between work in Image Space and Parameter Space

• Handling inaccurate edge locations:

• Increment Patch in Accumulator rather than a single point

230

Practical details

• Try to get rid of irrelevant features

🞑 Take only edge points with significant gradient magnitude

• Choose a good grid / discretization

🞑 Too coarse: large votes obtained when too many different lines correspond to a
single bucket

🞑 Too fine: miss lines because some points that are not exactly collinear cast votes for
different buckets

• Increment neighboring bins (smoothing in accumulator array)

• Who belongs to which line?

🞑 Tag the votes

231

Hough transform: Pros

• Can deal with non-locality and occlusion

• Can detect multiple instances of a model in a single pass

• Some robustness to noise: noise points unlikely to contribute consistently
to any single bin

232

Hough transform: Cons

• Complexity of search time increases exponentially with the number of
model parameters

• Non-target shapes can produce spurious peaks in parameter space

• It’s hard to pick a good grid size

233

Summary

◻ In this lecture we have begun looking at segmentation, and in particular
edge detection

◻ Edge detection is massively important as it is in many cases the first step
to object recognition

234

	Slide 1: DIGITAL IMAGE PROCESSING
	Slide 2: What is segmentation?
	Slide 3: The Segmentation Problem
	Slide 4: Segmentation Examples
	Slide 5: Wikipedia on segmentation
	Slide 6: Why segmentation?
	Slide 7: Why segmentation?
	Slide 8: Segmentation – difficulty
	Slide 9: Targeted Segmentation
	Slide 10: Targeted Segmentation
	Slide 11: Dilemma
	Slide 12: Targeted Segmentation
	Slide 13: Segmentation Algorithms
	Slide 14: Overview of Segmentation Techniques
	Slide 15
	Slide 16
	Slide 17: Texture-based Techniques
	Slide 18: Segmentation Algorithms
	Slide 19: Thresholding
	Slide 20: Thresholding Example
	Slide 21: But Be Careful
	Slide 22: Thresholding - methods
	Slide 23: Global Thresholding
	Slide 24: How to find a global threshold
	Slide 25: How to find a global threshold
	Slide 26: Global threshold - Example
	Slide 27: Global threshold - Example
	Slide 28: Global threshold
	Slide 29: Thresholding Example 2
	Slide 30: Optimum Global threshold
	Slide 31: Otsu’s Method
	Slide 32: Otsu’s Method
	Slide 33: Otsu’s Method
	Slide 34: Otsu’s Method
	Slide 35: Otsu’s Method
	Slide 36: Otsu’s Method
	Slide 37: Otsu’s Method
	Slide 38: Otsu’s Method
	Slide 39: Otsu - Example
	Slide 40: Gaussian noise added
	Slide 41: Otsu’s Method – effect of noise and smoothing
	Slide 42: Multi-Valued Thresholding
	Slide 43: Multi-Valued Thresholding
	Slide 44: Multi-Valued Thresholding
	Slide 45: MAXIMUM ENTROPY THRESHOLDING
	Slide 46: Maximum Entropy Thresholding
	Slide 47: Maximum Entropy Thresholding
	Slide 48: Maximum Entropy Thresholding
	Slide 49: Maximum Entropy Thresholding
	Slide 50: Maximum Entropy Thresholding
	Slide 51: Maximum Entropy Thresholding
	Slide 52: MET
	Slide 53: Maximum Entropy Thresholding
	Slide 54: Exercise – Otsu
	Slide 55: Exercise - MET
	Slide 56: How can we choose the minimum error threshold?
	Slide 57: How can we choose the minimum error threshold?
	Slide 58: How can we choose the minimum error threshold?
	Slide 59: How can we choose the minimum error threshold?
	Slide 60: What is the minimum error threshold when object and background pixels arenormally distributed?
	Slide 61: What is the minimum error threshold when object and background pixels arenormally distributed?
	Slide 62
	Slide 63: Problems With Single Value Thresholding
	Slide 64: Single Value Thresholding - Illumination
	Slide 65: Single Value Thresholding - Illumination
	Slide 66: Adaptive Thresholding
	Slide 67: Adaptive Thresholding - partitioning
	Slide 68: Adaptive Thresholding Example (cont…)
	Slide 69: Adaptive Thresholding
	Slide 70: Adaptive Thresholding
	Slide 71: Adaptive Thresholding
	Slide 72: Adaptive Thresholding - Niblack’s Method
	Slide 73: Adaptive Thresholding
	Slide 74: Adaptive Thresholding
	Slide 75: Adaptive Thresholding
	Slide 76: Adaptive Thresholding
	Slide 77: Summary
	Slide 78: REGION-BASED SEGMENTATION
	Slide 79: Segmentation
	Slide 80: Segmentation
	Slide 81: Segmentation
	Slide 82: Region Growing (Merge)
	Slide 83: Region Growing
	Slide 84: Region Growing
	Slide 85: Region Growing Predicate
	Slide 86: Region growing
	Slide 87: Split
	Slide 88: Split
	Slide 89: Split
	Slide 90: Split
	Slide 91: Split / Merge
	Slide 92: Split / Merge
	Slide 93: Split / Merge
	Slide 94: Split / Merge
	Slide 95: Split / Merge
	Slide 96: Split / Merge
	Slide 97: Split / Merge
	Slide 98: Applications
	Slide 99: Results – Region grow
	Slide 100: Results – Region Split
	Slide 101: Results – Region Split and Merge
	Slide 102: Results – Region growing
	Slide 103: Results – Region Split
	Slide 104: Results – Region Split and Merge
	Slide 105: Problems with regional segmentation
	Slide 106: Problems with regional segmentation
	Slide 107: Problems with regional segmentation
	Slide 108: EDGE BASED SEGMENTATION
	Slide 109: Edge-based segmentation
	Slide 110: Detection Of Discontinuities
	Slide 111: Point Detection
	Slide 112: Point Detection (cont…)
	Slide 113: Line Detection
	Slide 114: Line Detection (cont…)
	Slide 115: Edge Detection
	Slide 116: Edges & Derivatives
	Slide 117: Intensity profile
	Slide 118: With a little Gaussian noise
	Slide 119: Effects of noise
	Slide 120: Derivatives & Noise
	Slide 121: Effects of noise
	Slide 122: Solution: smooth first
	Slide 123: Derivative theorem of convolution
	Slide 124: Derivative of Gaussian filter
	Slide 125: Discrete Derivative in 1D
	Slide 126: 1D Discrete derivatives & Filters
	Slide 127: Discrete derivate in 2D
	Slide 128: Discrete derivate in 2D
	Slide 129: 2D discrete derivative filters
	Slide 130: 3x3 image gradient filters
	Slide 131: Sobel Operator
	Slide 132: Other Edge operators
	Slide 133: Simple Edge Detector
	Slide 134: Simple Edge Detector – Sobel based
	Slide 135: Simple Edge Detector – Sobel based
	Slide 136: Edge Detection Example
	Slide 137: Edge Detection Example
	Slide 138: Edge Detection Example
	Slide 139: Edge Detection Example
	Slide 140: Edge Detection Problems
	Slide 141: Simple Edge Detector – Sobel based
	Slide 142: Simple Edge Detector - threshold
	Slide 143: Simple Edge Detector
	Slide 144: Combining Gradient with thresholds
	Slide 145: Laplacian Edge Detection
	Slide 146: Laplacian Edge Detection
	Slide 147: Ideas to Improve Robustness (SS)
	Slide 148: Laplacian Of Gaussian
	Slide 149: Laplacian Of Gaussian
	Slide 150: Robust Laplacian-based Edge Detector
	Slide 151: Robust Laplacian-based Edge Detector
	Slide 152: Designing an edge detector
	Slide 153: Canny Edge Detector
	Slide 154: Flow-chart of Canny Edge Detector* (J. Canny’1986)
	Slide 155: Example
	Slide 156: Derivative of Gaussian filter
	Slide 157: Compute Gradients
	Slide 158: Get Orientation at Each Pixel
	Slide 159: Non-maximum suppression
	Slide 160: Non-maximum suppression
	Slide 161: Non-maximum suppression – avoid tan function
	Slide 162: Non-maximum suppression – avoid tan function
	Slide 163: Sidebar: Bilinear Interpolation
	Slide 164: Before Non-max Suppression
	Slide 165: After non-max suppression
	Slide 166: Before Non-max Suppression
	Slide 167: After non-max suppression
	Slide 168: Hysteresis thresholding
	Slide 169: Hysteresis Threshold
	Slide 170: Hyteresis Threshold
	Slide 171: Hysteresis thresholding
	Slide 172: Canny Algorithm
	Slide 173: Canny Algorithm
	Slide 174: Canny Algorithm
	Slide 175: Canny Algorithm
	Slide 176: Canny Algorithm
	Slide 177: Canny Edge Detector Example
	Slide 178: Canny – effect of sigma
	Slide 179: Canny – effect of sigma
	Slide 180: Edge-based segmentation
	Slide 181: An edge is not a line...
	Slide 182: Finding lines in an image
	Slide 183: Hough Transform
	Slide 184: Hough Transform
	Slide 185: Hough Transform
	Slide 186: Hough Transform
	Slide 187: Hough Transform
	Slide 188: Hough Transform
	Slide 189: Hough Transform
	Slide 190: Hough Transform
	Slide 191: Hough Transform
	Slide 192: Hough Parameterization
	Slide 193: Hough Parameterization
	Slide 194: Consequence:
	Slide 195: r,θ space
	Slide 196: Hough transform
	Slide 197: Hough transform
	Slide 198: Hough Transform Algorithm
	Slide 199: Hough Transform Algorithm
	Slide 200: Hough Transform Algorithm
	Slide 201: Hough Transform Algorithm
	Slide 202: Hough Transform Algorithm
	Slide 203: Hough Transform Algorithm
	Slide 204: Hough Transform Algorithm
	Slide 205: Hough Transform - Basic illustration
	Slide 206: Hough Transform - Basic illustration
	Slide 207: Hough Transform - issues
	Slide 208: Hough Transform - issues
	Slide 209: Hough Transform- Other shapes
	Slide 210: Hough Transform- Real World Example
	Slide 211: Hough Transform - Speed Up
	Slide 212: Hough Transform - Bias compensation
	Slide 213: Hough Transform - Line endpoints
	Slide 214: Hough Transform – Modified accumulation
	Slide 215: Hough Transform- Effect of noise
	Slide 216: Effect of noise
	Slide 217: Random points
	Slide 218: Random points
	Slide 219: Finding Circles by Hough Transform
	Slide 220: Finding Circles by Hough Transform
	Slide 221: Using Gradient Information
	Slide 222: Real World Circle Examples
	Slide 223: Finding Coins
	Slide 224: Finding Coins (Continued)
	Slide 225: Finding Coins (Continued)
	Slide 226: Generalized Hough Transform
	Slide 227: Generalized Hough Transform
	Slide 228: Generalized Hough Transform
	Slide 229
	Slide 230: Hough Transform: Comments
	Slide 231: Practical details
	Slide 232: Hough transform: Pros
	Slide 233: Hough transform: Cons
	Slide 234: Summary

