
DIGITAL IMAGE PROCESSING

Image Segmentation:
Thresholding



What is segmentation?

◻ Dividing the image into different regions.

🞑 Separating objects from background and giving them individual labels(ID numbers)

◻ The purpose of image segmentation is to partition an image into 
meaningful regions with respect to a particular application
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The Segmentation Problem

◻Segmentation attempts to partition the pixels of an image into groups that 
strongly correlate with the objects in an image

◻Typically the first step in any automated computer vision application
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Segmentation Examples
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Wikipedia on segmentation

”In computer vision, Segmentation is the process of partitioning a digital 
image into multiple segments”

”More precisely, image segmentation is the process of assigning a label to 
every pixel in an image such that pixels with the same label share certain 
visual characteristics.”

”Each of the pixels in a region are similar with respect to some characteristic 
or computed property, such as color, intensity, or texture. Adjacent regions 
are significantly different with respect to the same characteristic(s).”
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Why segmentation?

◻ Usually image segmentation is an initial and vital step in a series of 
processes aimed at overall image understanding 

🞑 Segmentation is generally the first stage in any attempt to analyze or interpret an image 
automatically.

◻ Segmentation bridges the gap between  low-level image processing and 
high-level image processing.

◻ Some kinds of segmentation technique will be found in any application 
involving the detection, recognition, and measurement of objects in 
images.
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Why segmentation?

◻ The role of segmentation is crucial in most tasks requiring image analysis.  

🞑 The success or failure of the task is often a direct consequence of the success or failure of 
segmentation.

◻ Accurate segmentation of objects of interest in an image greatly facilitates 
further analysis of these objects. For example, it allows us to:

🞑 Count the number of objects of a certain type.

🞑 Measure geometric properties (e.g., area, perimeter) 

of objects in the image.

🞑 Study properties of an individual object (intensity, 

texture, etc.)

7



Segmentation – difficulty

◻ Segmentation is often the most difficult problem to solve in image 
analysis.

🞑 There is no universal solution!

◻ A reliable and accurate segmentation of an image is, in general, very 
difficult to achieve by purely  automatic means

”Since there is no general solution to the image segmentation problem, these [general 
purpose] techniques often have to be combined with domain knowledge in order to 
effectively solve an image segmentation problem for a problem domain.” - wikipedia
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Targeted Segmentation

◻ Segmentation is an ill-posed problem...

What is a correct segmentation of this image?
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Targeted Segmentation

◻ ...unless we specify a segmentation target.
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Dilemma

input result 1 result 2

What do we mean by “DIFFERENT” objects?

Another example: when we look at trees at a close distance, we consider 

each of them as a different object; but as we look at trees far away, they 

merge into one coherent object (woods)
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Targeted Segmentation

◻ A segmentation can also be defined as a mapping from the set of pixels to 
some application dependent target set, e.g.

🞑 {Object, Background}

🞑 {Humans, Other objects}

🞑 {1,2,3,4,...}

🞑 {Healthy tissue, Tumors}

◻ To perform accurate segmentation, we (or our algorithms) need to 
somehow know how to differentiate between different elements of the
target set.
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Segmentation Algorithms

◻ Segmentation algorithms are based on one of two basic properties of color,
gray values, or texture:

◻ Similarity

🞑 Partition an image into regions that are similar according to a predefined criteria.

◻ Discontinuity
🞑 Detecting boundaries of regions based on local discontinuity in intensity.
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Overview of Segmentation Techniques

Texture-based

Edge-based

Color-based

Disparity-based

Motion-based



EE465: Introduction to Digital Image Processing Copyright 

Xin Li 15

Edge-based Techniques

Edge

detection

Segmentation

by boundary 

detection

Classification

and analysis
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Region-Filling
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Texture-based Techniques

What is Texture?

No one exactly knows.

In the visual arts, texture

is the perceived surface quality 

of an artwork. 



Segmentation Algorithms

◻ We will study Four types of algorithms

🞑 Thresholding

■ Based on pixel intensities (shape of histogram is often used for automation).

🞑 Edge-based

■ Detecting edges that separate regions from each other.

🞑 Region-based

■ Grouping similar pixels (with e.g. region growing,  split & merge).

🞑 Watershed segmentation

■ Find regions corresponding to local minima in intensity.

→ Similarity

→ Similarity

→ Discontinuity

→ Discontinuity
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Thresholding

◻ Simplest, widely used for image segmentation.

◻ It is useful in discriminating foreground from the background.

◻ By selecting an adequate threshold T, the grayscale image can be converted to
binary image.

◻ mathematically :
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Thresholding Example

◻ Imagine a poker playing robot that needs to visually interpret the cards in 
its hand

Original Image Thresholded Image
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But Be Careful

◻ If you get the threshold wrong the results can be disastrous

Threshold Too Low Threshold Too High
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Thresholding - methods

◻ Global threshold
The same value is used for the whole image.

◻ Optimal global threshold
Based on the shape of the current image histogram. Searching for valleys, 
Gaussian distribution etc.

◻ Local (or dynamic) threshold
The image is divided into non-overlapping sections, which are thresholded 
one by one.
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Global Thresholding

◻ Partition the image histogram using a single global threshold

◻ Success strongly depends on how well the histogram can be partitioned

◻ We chose a threshold T midway between the two gray value distributions.
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How to find a global threshold

◻ The basic global threshold, T, is calculated

◻ as follows:

1. Select an initial estimate for T (typically the average grey level in the 
image)

2. Segment the image using T to produce two groups of pixels: 

G1 : pixels with grey levels >T 

G2 : pixels with grey levels ≤ T

3. Compute the average grey levels of pixels in G1 to give μ1 and G2 to 
give μ2
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How to find a global threshold

4. Compute a new threshold value:

5. Repeat steps 2 – 4 until the difference in T in successive iterations is 
less than a predefined limit T∞
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Global threshold - Example 
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Global threshold - Example 

Image after 

segmentation

Image histogram

Grayscale rice image
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Global threshold

◻ This algorithm works very well for finding thresholds when the histogram is 
suitable (bi-modal)
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Thresholding Example 2
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Optimum Global threshold

◻ Otsu’s Method 

◻ Based on a very simple idea: Find the threshold that minimizes the 
weighted within-class variance. 

◻ This turns out to be the same as maximizing the between-class variance.

◻ Operates directly on the gray level histogram [e.g. 256 numbers, P(i)], so 
it’s fast (once the histogram is computed).
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Otsu’s Method

◻ {0,1,2,…,L-1} ,  L means gray level intensity

• Select a threshold                                  , and use it to 

classify C1: intensity in the range [0, k]  and C2: [k+1, L-1] 

,

M*N = total number of pixel.

ni = number of pixels with intensity i

pi = ni / MN, probability of intensity i

Class Probability

Class mean
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Otsu’s Method

global variance

Class variance

Minimize:  within Class variance

Global mean

Between Class variance
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Otsu’s Method
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Otsu’s Method

34

it is between-class variance

it is a measure of separability between class.

For x = 0,1,2,…,M-1 

and y = 0,1,2…,N-1.



Otsu’s Method

Cumulative mean upto kwhere
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Otsu’s Method

◻ The criterion function involves between-classes variance to the total variance is 
defined as:

η = σB
2 / σG

2

◻ All possible thresholds are evaluated in this way, and the one that maximizes η

is chosen as the optimal threshold
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Otsu’s Method
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Otsu’s Method
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Otsu - Example

m_g 2.3611

i n_i P_i P1 i*p_i m (m - P1*m_g)^2 sigma2_B

0 8 0.2222 0.2222 0.0000 0.0000 0.2753 1.5928

1 7 0.1944 0.4167 0.1944 0.1944 0.6231 2.5635

2 2 0.0556 0.4722 0.1111 0.3056 0.6552 2.6287

3 6 0.1667 0.6389 0.5000 0.8056 0.4941 2.1417

4 9 0.2500 0.8889 1.0000 1.8056 0.0860 0.8705

5 4 0.1111 1.0000 0.5556 2.3611 0.0000 #DIV/0!
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Gaussian noise added
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Otsu’s Method – effect of noise and smoothing
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Multi-Valued Thresholding

◻ Single value thresholding only works for bimodal histograms

◻ Images with other kinds of histograms need more than a single threshold
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Multi-Valued Thresholding

because the separability measure on which it is based also extends to an arbitrary number of 

classes (Fukunaga [1972]). In the case of K classes, c1, c2, c3 ,  …, K, the between-class 

variance generalizes to the expression
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Multi-Valued Thresholding
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MAXIMUM ENTROPY THRESHOLDING

Section 11.1.5 

Digital Image Processing: An Algorithmic Introduction Using Java -
Wilhelm Burger • Mark J. Burge



Maximum Entropy Thresholding

◻ The entropy statistic is high if a variable is well distributed over the available range, and low if 
it is well ordered and narrowly distributed: specifically, entropy is a measure of disorder, and 
is zero for a perfectly ordered system. 

◻ The concept of entropy thresholding is to threshold at an intensity for which the sum of the 
entropies of the two intensity probability distributions thereby separated is maximized.

◻ The reason for this is to obtain the greatest reduction in entropy—i.e., the greatest increase 
in order—by applying the threshold: in other words, the most appropriate threshold level is 
the one that imposes the greatest order on the system, and thus leads to the most 
meaningful result

46



Maximum Entropy Thresholding

Z = {0, 1, . . . , K−1} ,

possible intensity values g = 0, . . . , K −1

P(0) = p(0) and P(K −1) = 1. 

Entropy of image
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Maximum Entropy Thresholding

Given a particular threshold q (with 0 ≤ q < K-1), the estimated

probability distributions for the resulting partitions C0and C1

overall entropy is to be maximized
48



Maximum Entropy Thresholding

Rearranging
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Maximum Entropy Thresholding

the values S0(q), S1(q) are obtained 

from precalculated tables S0, S1
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Maximum Entropy Thresholding
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MET
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Maximum Entropy Thresholding

Graphs in (e–h) show

the background entropy H0(q)

(green), foreground entropy H

1(q) (blue) and overall entropy 

H01(q) = H0(q) + H1(q)

(red) 
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Exercise – Otsu
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Exercise - MET
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How can we choose the minimum error threshold?

error committed by misclassifying object pixels as 

background pixels

error committed by misclassifying background 

pixels as object pixels

Fraction of the pixels that make up the object is θ, and, by 

inference, the fraction of the pixels that

make up the background is 1 − θ. Then, the total error is
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How can we choose the minimum error threshold?

❑ The grey values of the object and the background pixels are distributed according to 

the probability density function

with x0 = 1 and a = 1 for the objects, and x0 = 3 and a 

= 2 for the background. Sketch the two probability 

density functions. 

❑ If one-third of the total number of pixels are object 

pixels, determine the fraction of misclassified object 

pixels by optimal thresholding.

57



How can we choose the minimum error threshold?
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How can we choose the minimum error threshold?
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What is the minimum error threshold when object and 
background pixels arenormally distributed?
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What is the minimum error threshold when object and 
background pixels arenormally distributed?

61



62



Problems With Single Value Thresholding

◻ Single value thresholding only works for bimodal histograms

◻ Images with other kinds of histograms need more than a single threshold
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Single Value Thresholding - Illumination

◻ Uneven illumination can really upset a single valued thresholding scheme
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Single Value Thresholding - Illumination

◻ Uneven illumination or low light
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Adaptive Thresholding

◻ Partitioning

◻ An approach to handling situations in which single value thresholding will 
not work is to divide an image into sub images and threshold these 
individually

◻ Since the threshold for each pixel depends on its location within an image 
this technique is said to adaptive
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Adaptive Thresholding - partitioning

◻ As can be seen success is mixed

◻ It is work when the objects of interest and the background occupy regions 
of reasonably comparable size. If not , it will fail.

◻ But, we can further subdivide the troublesome sub images for more 
success
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Adaptive Thresholding Example (cont…)

◻ These images show the troublesome 
parts of the previous problem further 
subdivided

◻ After this sub division successful 
thresholding can be achieved
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Adaptive Thresholding

◻ Bernsen’s Method

This is done as long as the local contrast 
c(u, v) = Imax(u, v) - Imin(u, v) is above some 

predefined limit cmin

local minimum (green), maximum (red), 
and the actual threshold (blue) 69



Adaptive Thresholding

◻ Niblack’s Method

🞑 based on local image properties

🞑 threshold Q(u, v) is varied across the image as a function of the local intensity 
average μR(u, v) and standard deviation σR(u, v) 

; κ ≥ 0

▪ Or, to avoid low-amplitude noise (“ghosting”)

▪ the structures of interest are darker than the background (as, e.g., in typical OCR applications), one 

could either work with inverted images or modify the calculation of the threshold 
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Adaptive Thresholding

Returns the local mean and variance of the image 

pixels I(i, j) within the disk-shaped region with radius 

r around position (u, v).
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Adaptive Thresholding - Niblack’s Method

◻
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Adaptive Thresholding

◻ Niblack’s Method - modification
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Adaptive Thresholding

Using moving average

◻ It is based on computing a moving average along scan lines of an image.

◻ denote the intensity of the point at step k+1.

n denote the number of point used in the average.

◻ is the initial value.

◻ ,where b is constant and  is the moving     average at point (x,y) 
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Adaptive Thresholding

◻ moving average

◻ Works well, when objects of interest are small (thin) with respect to the image 
size e.g. typed of hand written text

N=20, b=0.5

75



Adaptive Thresholding

◻ moving average

◻ Works well, when objects of interest are small (thin) with respect to the image 
size e.g. typed of hand written text
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Summary

◻ In this lecture we have begun looking at segmentation, and in particular 
thresholding

◻ We saw the basic global thresholding algorithm and its shortcomings

◻ We also saw a simple way to overcome some of these limitations using 
adaptive thresholding
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REGION-BASED SEGMENTATION



Segmentation

◻ An image domain X must be segmented in N different regions R(1),…,R(N)

◻ The segmentation rule is a logical predicate of the form P(R)

◻ Image segmentation with respect to predicate P partitions the image X 
into subregions Ri, i =1,…,N such that

X = i=1,..N U Ri

Ri ∩ Rj = 0 for i ≠ j

P(Ri) = TRUE  for i = 1,2,…,N

P(Ri U Rj) = FALSE for i ≠ j
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Segmentation

◻ The segmentation property is a logical predicate of the form P(R,x,t)

◻ x is a feature vector associated with region R

◻ t is a set of parameters (usually thresholds). A simple segmentation rule 
has the form:

P(R) : I(r,c) < T for all (r,c) in R
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Segmentation

◻ In the case of color images the feature vector x can be three RGB image 
components (R(r,c),G(r,c),B(r,c))

◻ A simple segmentation rule may have the form:

P(R) : (R(r,c) <T(R)) && (G(r,c)<T(G))&&

(B(r,c) < T(B))
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Region Growing (Merge)

◻ A simple approach to image segmentation is to start from some pixels 
(seeds) representing distinct image regions and to grow them, until they 
cover the entire image

◻ For region growing we need a rule describing a growth mechanism and a 
rule checking the homogeneity of the regions after each growth step
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Region Growing 

◻ The growth mechanism – at each stage k and for each region Ri(k), i = 
1,…,N, 

🞑 Check if there are unclassified pixels in the 8-neighbourhood of each pixel of the 
region border

◻ Before assigning such a pixel x to a region Ri(k),we check if the region 
homogeneity:

P(Ri(k) U {x}) = TRUE , is valid

◻ Selection of similarity criteria: color, descriptors (gray level + moments / 
texture)
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Region Growing 

◻ Choosing a seed pixel:

🞑 Preferably provided by the user. A good seed can be drawn from the peak of 
the object histogram

◻ Minimum area thresholding:

🞑 No region will be smaller than this threshold in the segmented image

◻ Similarity threshold:

🞑 If a pixel and a region (or region A and region B) are considered similar enough 
a union is made, Otherwise a new region is formed

🞑 High threshold value – easy for new pixels to get accepted to the region

🞑 Low threshold value – hard for new pixels to get accepted
84



Region Growing Predicate

◻ Similarity check example::

◻ At each iteration, and for each region Ri Compute arithmetic mean mi and standard 

deviation σi having n =|Ri| pixels:

◻ If the regions adhere the similarity (homogeneity) condition than we can unite them

◻ The predicate P can be used to decide if the merging of the two regions Ri, Rj is allowed
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average intensity variance

color texture

Motion

shape size

etc…

Region growing

◻ Other homogeneity criteria (with more features) can be 
considered
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Split

◻ The opposite approach to region growing is region splitting.

◻ It is a top-down approach 

◻ Briefly-

1. it starts with the assumption that the entire image is homogeneous

2. If this is not true (by the homogeneity criterion, P), the image is split into four 
sub images

3. This splitting procedure is repeated recursively until we split the image into 
homogeneous regions

Split & merge
(top 
down)
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Split

◻ If the original image is square N x N, having dimensions that are powers of 2(N = 
2n):

◻ All regions produced but the splitting algorithm are squares having dimensions   
M x M , where M is a power of 2 as well.

◻ Since the procedure is recursive, it produces an image representation that can 
be described by a tree whose nodes have four sons each

◻ Such a tree is called a Quadtree.
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Split

Quadtree

R0 R1

R2
R3

R0

R1

R00 R01 R02 R04
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Split

◻ Disadvantage

🞑 They create regions that may be adjacent and homogeneous, but not merged.

◻ Improvement - Split and Merge 

🞑 An iterative algorithm that includes both splitting and merging at each iteration:
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Split / Merge

◻ Briefly-

1. it starts with the assumption that the entire image is homogeneous

2. If this is not true (by the homogeneity criterion), the image is split 
into four sub images

3. This splitting procedure is repeated recursively until we split the 
image into homogeneous regions

4. Merging phase: If 2 adjacent regions are homogenous, they are 
merged

5. Repeat step 4 until no further merging is possible
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Split / Merge

1. Split any region Ri into 4 disjoint quadrants for which P(Ri) = FALSE

2. Merge any adjacent region Ri and Rj for which P(Ri U Rj ) = TRUE

3. Repeat step 1 and 2 until no further splitting or merging is possible.

◻ The split and merge algorithm produces more compact regions than the 
pure splitting algorithm
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Split / Merge

Iteration 1

Iteration 2 Iteration 3
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Split / Merge
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Split / Merge
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Split / Merge
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Split / Merge

◻ Try this
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Applications

◻ 3D – Imaging : A basic task in 3-D image processing is the segmentation of an 
image which classifies voxels/pixels into objects or groups. 

◻ 3-D image segmentation makes it possible to create 3-D rendering for multiple 
objects and perform quantitative analysis for the size, density and other 
parameters of detected objects. 

◻ Several applications in the field of Medicine like magnetic resonance imaging 
(MRI). 
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Results – Region grow
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Results – Region Split
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Results – Region Split and Merge
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Results – Region growing
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Results – Region Split
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Results – Region Split and Merge
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Problems with regional segmentation 

◻ There are problems with regional segmentation of any form:

🞑 ``Meaningful'' regions may not be uniform: surface properties of a solid body will 
vary in brightness or colour dependent on the existence of slowly varying gradients 
due to lighting conditions. 

■ Lighting effects or curvature affect the appearance, e.g. a sphere illuminated by a point 
light source may have intensities varying from pure white to black, yet is a single surface.

🞑 It is very unusual in practice for an image to be composed of uniform regions of 
similar intensity, or colour, or texture etc.

🞑 Regional segmentation works best with binary data as the limited range of values 
lead to more uniform regions.
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Problems with regional segmentation 

◻ In practice, boundary segmentation is much more widely applied than 
regional segmentation for several reasons 

🞑 Algorithms are usually less complex: they tend to use local properties and software 
and hardware implementations are readily available.

🞑 Humans may use edge detection: there is evidence of links between edge detection 
and early human visual processing, which lead to the observation that contoured 
images are more easily identified than regional images, particularly when degraded 
in some form.

🞑 Edges are often more useful in matching: as finding regions or edges is often 
preliminary to identifying objects, it is important that edges have an easier model 
description (as lines).
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Problems with regional segmentation 
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EDGE BASED SEGMENTATION



Edge-based segmentation

◻ Edge-based methods center around contour detection

◻ General workflow

1. Detect edges, i.e., mark each pixel as ”edge” or ”not edge”.

1. Divide the image into regions, based on the detected edges. (Edge linking, Hough 
transform)

◻ Weakness in connecting broken contour lines make them prone to failure in 
the presence of blurring.

This part is non-trivial!
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Detection Of Discontinuities

◻ There are three basic types of grey level discontinuities that we tend to 
look for in digital images:

🞑 Points

🞑 Lines

🞑 Edges

◻ We typically find discontinuities using masks and correlation
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• Point detection can be achieved simply using the 

mask below:

• Points are detected at those pixels in the 

subsequent filtered image that are above a set 

threshold

Point Detection
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Point Detection (cont…)

X-ray image of 

a turbine blade

Result of point 

detection

Result of 

thresholding
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Line Detection

◻ The next level of complexity is to try to detect lines

◻ The masks below will extract lines that are one pixel thick and running in a 
particular direction
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Line Detection (cont…)

Binary image of a wire 

bond mask

After 

processing 

with -45° line 

detector

Result of 

thresholding 

filtering result
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Edge Detection

◻ An edge is a set of connected pixels that lie on the boundary between two 
regions

◻ Edge models

115



Edges & Derivatives

◻ We have already spoken
about how derivatives 
are used to find 
discontinuities

◻ 1st derivative tells us 
where an edge is

◻ 2nd derivative can
be used to show 
edge side
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Intensity profile

Source: D. Hoiem
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With a little Gaussian noise

Gradient

Source: D. Hoiem
118



Effects of noise

◻ Consider a single row or column of the image

🞑 Plotting intensity as a function of position gives a signal

Where is the edge?
Source: S. Seitz
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Derivatives & Noise

◻ Derivative based edge detectors are extremely sensitive to noise

◻ We need to keep this in mind
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Effects of noise

• Difference filters respond strongly to noise

🞑 Image noise results in pixels that look very different from their neighbors

🞑 Generally, the larger the noise the stronger the response

• What can we do about it?

Source: D. Forsyth
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Solution: smooth first

• To find edges, look for peaks in

f

g

f * g

Source: S. Seitz
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• Differentiation is convolution, and convolution is associative:

• This saves us one operation:

Derivative theorem of convolution

f

Source: S. Seitz
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Derivative of Gaussian filter

* [1 -1] = 
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Discrete Derivative in 1D
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1D Discrete derivatives & Filters

Backward

Forward

Central [ 1      0     -1]

[-1      1      0]

[0      1      -1]

derivate filters
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Discrete derivate in 2D
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Discrete derivate in 2D

128



2D discrete derivative filters

Normally, don’t write
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3x3 image gradient filters

Prewitt operator
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Sobel Operator

Gaussian 

smoothing

differentiation

Sobel operation = Smoothing + differentiation
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Other Edge operators

Kirsch compass operator
132



Simple Edge Detector

◻ Gradient based

🞑 Compute gradient magnitude

■ Use Sobel or any other edge operator

■ Optionally smooth before computing gradient

🞑 Apply thresholding
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Simple Edge Detector – Sobel based
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Simple Edge Detector – Sobel based

Gy

Gx Magnitude

too much 

detail
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Edge Detection Example
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Edge Detection Example

Horizontal Gradient Component
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Edge Detection Example

Vertical Gradient Component
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Edge Detection Example

Combined
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Edge Detection Problems

◻ Often, problems arise in edge detection in that there are is too much 
detail

◻ For example, the brickwork in the previous example

◻ One way to overcome this is to smooth images prior to edge detection
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◻ With Smoothing - 5x5 average filter

Gy

Gx Magnitude

Simple Edge Detector – Sobel based
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Simple Edge Detector - threshold

thresholdsmall large

50 80 100
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Simple Edge Detector 

◻ Issues

🞑 Poor Localization (Trigger response in multiple adjacent pixels)

🞑 Thresholding value favors certain directions over others

🞑 Sobel can miss oblique edges more than horizontal or vertical edges

🞑 False negatives
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Combining Gradient with thresholds

Introduction to Digital Image Processing Copyright Xin Li

thresholdsmall large
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Laplacian Edge Detection

◻ We encountered the 2nd-order derivative based Laplacian filter already

f f’ f’’

zero crossing

Laplacian

operator
image zero-crossing

edge

map
f(x,y) g(x,y) E(x,y)
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Examples

zero-crossingsoriginal image

Question: why is it so sensitive to noise (many false alarms)?

Answer: a sign flip from 0.01 to -0.01 is treated the same as

from 100 to -100 

Laplacian Edge Detection
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Ideas to Improve Robustness (SS)

◻ The Laplacian is typically not used by itself as it is too sensitive to noise

◻ Linear filtering
🞑 Use a Gaussian filter to smooth out noise component → Laplacian of Gaussian (LoG) 

filter (Marr – Hildreth operator)

◻ Spatially-adaptive (Nonlinear) processing
🞑 Apply different detection strategies to smooth areas (low-variance) and non-smooth 

areas (high-variance) → Robust Laplacian edge detector

◻ Return single response to edges (not multiple edge pixels) 
🞑 Hysteresis thresholding → Canny’s edge detector
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Laplacian Of Gaussian

◻ The Laplacian of Gaussian (or Mexican hat) filter uses the Gaussian for 
noise removal and the Laplacian for edge detection
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Laplacian Of Gaussian

Laplacian

operator
image edge

map

Gaussian

LPF (σ)

Pre-filtering: attenuate the noise sensitivity of the Laplacian 

f(x,y) g(x,y) E(x,y)

Better than 

Laplacian 

alone but still 

sensitive due to 

zero crossing 
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Robust Laplacian-based Edge Detector 

Laplacian

operator
image zero

crossing?

estimate

local variance

σ2>th

σ2

not an

edge point

No

yes

No

not an

edge point

edge

point
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Robust Laplacian-based Edge Detector 

More robust but return multiple edge pixels 

(poor localization)
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Designing an edge detector

◻ Criteria for an “optimal” edge detector:

🞑 Good detection: must minimize the probability of false positives (detecting spurious edges caused by noise),
as well as that of false negatives (missing real edges)

🞑 Good localization: the edges detected must be as close as possible to the true edges

🞑 Single response: must return one point only for each true edge point; that is, minimize the number of local 
maxima around the true edge
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Canny Edge Detector

◻ most widely used edge detector in computer vision

◻ Low error rate of detection 

🞑 Well match human perception results

◻ Good localization of edges 

🞑 The distance between actual edges in an image and the edges found by a 
computational algorithm should be minimized

◻ Single response

🞑 The algorithm should not return multiple edges pixels when only a single one exists
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Original image

Smoothing by Gaussian convolution

Differential operators along x and y axis

Non-maximum suppression

finds peaks in the image gradient

Hysteresis thresholding locates edge strings

Edge map

Flow-chart of Canny Edge Detector*
(J. Canny’1986)

Generally done 

in one step

Also done 

in one step
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Example

original image (Lena)
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Derivative of Gaussian filter

x-direction y-direction
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Compute Gradients

X-Derivative of Gaussian Y-Derivative of Gaussian Gradient Magnitude
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Get Orientation at Each Pixel

◻ Get orientation

theta = atan2(Gy, Gx)
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Non-maximum suppression

◻ Edge occurs where gradient reaches a maxima

◻ Suppress non-maxima gradient even if it passes threshold

◻ Only eight angle directions possible 

🞑 Suppress all pixels in each direction which are not maxima

🞑 Do this in each marked pixel neighborhood
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Non-maximum suppression 

At q, we have a maximum if the value is larger 

than those at both p and at r. 

q= current pixel (x,y), 

p, r = neighbor positions along gradient direction

Interpolate to get magnitude of these values.
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Non-maximum suppression – avoid tan function 

y

x

Grad

Edge

00

2

2

1

1

3

3
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Non-maximum suppression – avoid tan function 
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Sidebar: Bilinear Interpolation

http://en.wikipedia.org/wiki/Bilinear_interpolation163

http://en.wikipedia.org/wiki/Bilinear_interpolation


Before Non-max Suppression
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After non-max suppression
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Before Non-max Suppression
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After non-max suppression
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Hysteresis thresholding

◻ Threshold at low/high levels to get weak/strong edge pixels

◻ Do connected components, starting from strong edge pixels
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Hysteresis Threshold

◻ Canny uses hysteresis threshold to fill up the narrow gap along the edge. 

◻ Uses two threshold - high threshold T_h and low threshold T_l.

◻ Pixels with gray values greater than T_h is set as the initial edge pixels 

◻ Pixels are set as background if their values are lower than T_l.
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Hyteresis Threshold

◻ A following recursive process takes charge of pixels lying between T_h and 
T_l. 

🞑 Let, call them as vibrating pixels. 

🞑 The recurs checks 8-adjancent neighbors of each initial edge pixel to see whether 
there are vibrating pixels. 

🞑 Vibrating pixels will be added to the initial edge pixel set. 

🞑 This process will go on until all the initial edge pixels have been recursed, and 
vibrating pixels that have not been visited will be set as background pixel.
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Hysteresis thresholding

Single 

threshold
Hysteresis

threshold
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Canny Algorithm
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Canny Algorithm

173



Canny Algorithm
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Canny Algorithm
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Canny Algorithm
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canny1lena canny2

original image vertical edges horizontal edges
canny3 canny4 canny5

norm of the gradient after NMS after H. Thresholding

Canny Edge Detector Example
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Canny – effect of sigma
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Canny – effect 
of sigma
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Edge-based segmentation

◻ Edge-based methods center around contour detection

◻ General workflow

1. Detect edges, i.e., mark each pixel as ”edge” or ”not edge”.

1. Divide the image into regions, based on the detected edges. (Edge linking, Hough 
transform)

◻ Weakness in connecting broken contour lines make them prone to failure in 
the presence of blurring.

This part is non-trivial!

180



An edge is not a line...

How can we detect lines ?

181



Finding lines in an image

◻ Option 1:

🞑 Search for the line at every possible position/orientation

🞑 What is the cost of this operation?

◻ Option 2:

🞑 Use a voting scheme:  Hough transform 
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Hough Transform

◻ Performed after Edge Detection

◻ It is a technique to isolate the curves of a given shape / shapes in a given image

◻ Classical Hough Transform can locate regular curves like straight lines, circles, 
parabolas, ellipses, etc.

🞑 Requires that the curve be specified in some parametric form

◻ Generalized Hough Transform can be used where a simple analytic description of 
feature is not possible
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Hough Transform

◻ Advantages

🞑 The Hough Transform is tolerant of gaps in the edges

🞑 It is relatively unaffected by noise

🞑 It is also unaffected by occlusion in the image
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Hough Transform

◻ Mathematical model of a line:

x

y Y = mx + c

P(x1,y1)

P(x2,y2)

Y1=m x1+c

Y2=m x2+c

YN=m xN+c
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Hough Transform

◻ Image and Parameter Spaces

x

y Y = mx + c Y1=m x1+c

Y2=m x2+c

YN=m xN+c

Y = m’x + c’

Image Space Parameter Space

intercept

slope

c

m

c’

m’

Line in Img. Space ~ Point in Param. Space
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Hough Transform

Y1=m2 x1+c2

Image space

Fix (m,c), Vary (x,y) - Line

Fix (x1,y1), Vary (m,c) – Lines thru a Point

Y = mx + c

x

y

P(x1,y1)

◻ Image and Parameter Spaces

Image space

Y1=m1 x1+c1

Y1=mn x1+cn

:
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Hough Transform

Can be re-written as: c =  -x1 m + y1y1=m x1+c

Parameter space

Fix (-x1,y1), Vary (m,c) - Line

◻ Image and Parameter Spaces

Parameter Space

intercept

slope

c =  -x1 m + Y1
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Hough Transform

◻ Image and Parameter Spaces
🞑 Given an edge point / pixel, there is an infinite number of lines passing through it 

(Vary m and c).

■ These lines can be represented as a single line in parameter space.

Parameter Space

intercept

slope

c

m

x

y c = (-x) m + y

P(x,y)
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Hough Transform

◻ Image and Parameter Spaces

🞑 Given a set of collinear edge points, each of them have associated a line in 
parameter space.

■ These lines intersect at the point (m′,c′) corresponding to the parameters of the line in 
the image space.

Parameter Space

intercept

slope

c'

m'

A(x1,y1)

B(x2,y2)
C(x3,y3)

x

y

Image Space
190



Hough Transform

◻ Image Space

🞑 Lines 

🞑 Points 

🞑 Collinear points

◻ Parameter Space

🞑 Points

🞑 Lines

🞑 Intersecting lines

Image and Parameter Spaces
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Hough Parameterization

◻ Practical Issues

🞑 The slope of the line is -∞<m<∞, parameter space is INFINITE

🞑 The representation y = mx + c does not express lines of the form x = k

◻ Solution: Use the “Normal”/ polar equation of a line:

x

y
Y = mx + c r = x cosθ + y sinθ

r

θ

P(x,y)
θ Is the line orientation

r Is the distance between 
the origin and the line
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Hough Parameterization

r = x cosθ+y sinθ 

x

y
Y = mx + c

r

θ

a

b
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Consequence:

◻ A Point P(x, y) in Image Space is now represented as a 
SINUSOID in the parameter space

🞑 r(θ) = x cosθ + y sinθ

◻ Use the parameter space (r, θ)

◻ The new space is FINITE

🞑 0 < r < D  , where D is the image diagonal.

🞑 0 < θ < π

◻ The new space can represent all lines

🞑 Y = k  is represented with r = k, θ=90

🞑 X = k is represented with r = k, θ=0
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r,θ space
◻ In (slope, intercept ) space

🞑 point in image space == line in (m,c) space

◻ In (r,θ)  space

🞑 point in image space == sinusoid in (r,θ) space

🞑 where sinusoids overlap, accumulator = max

🞑 maxima still = lines in image space

◻ Practically, finding maxima in accumulator is non-trivial

🞑 often smooth the accumulator for better results
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Hough transform

• An early type of voting scheme

• General outline: 

🞑 Discretize parameter space into bins

🞑 For each feature point in the image, put a vote in every bin in the parameter space that could have generated 
this point

🞑 Find bins that have the most votes

P.V.C. Hough, Machine Analysis of Bubble Chamber Pictures, Proc. 

Int. Conf. High Energy Accelerators and Instrumentation, 1959 

Image space Hough parameter space

196



x

y

thet
a

r

x

y r
3 5 3 3 2 2

3 7 11 10 4 3

2 3 1 4 5 2
2 1 0 1 3 3

thet
a

Hough transform
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Hough Transform Algorithm
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Hough Transform Algorithm

Increment accumulator cell A(i,j) by one

The line parameters θi and rj for a given

accumulator position (i, j) can be calculated 

as
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Hough Transform 
Algorithm

m×

n
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Hough Transform 
Algorithm

m×

n

201



Hough Transform 
Algorithm

m×

n
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Hough Transform Algorithm

Input: edge image (E(x,y)=1 for edgels)

1. Discretize r (<D) in increments of dρ 

Discretize θ (<π) in increments of dθ ( total# T) , and

Let A(R,T) be an accumulator array, initialized to 0.

2.  For each pixel E(x,y)=1 and For t=1,2,…T do

i. θ =t * dθ

ii. ρ = x cos(θ ) + y sin(θ )

iii. Find closest integer  r corresponding to ρ

iv. Increment counter A(r,t) by one i.e. A(r,t) = A(r,t)  

+1203



Hough Transform Algorithm

3. Compute the value(s) of (r, θ)  by finding A[r, t] is maximum, where    θ = 

t * dθ 

4. The detected line in the image space is given by

r = x cosθ+y sinθ

They are now constant
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features votes

Hough Transform - Basic illustration
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features votes

Hough Transform - Basic illustration
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Hough Transform - issues

Using only non max suppression
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Hough Transform - issues

Threshold operation  using 50% of the maximum 

value
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Square 

Hough Transform- Other shapes
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Hough Transform- Real World Example

Original Edge Detection Found Lines

Parameter Space
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Hough Transform - Speed Up

◻ If we know the orientation of the edge – usually available from the edge 
detection step

🞑 We fix theta in the parameter space and increment only one counter!

🞑 We can allow for orientation uncertainty by incrementing a few counters around the 
“nominal” counter.
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Hough Transform - Bias compensation 

◻ if we only search the accumulator array for maximal values, it is likely that 
we will completely miss short line segments

Amax(i, j) = maximum number of image points 

possible for a line with the corresponding 

parameters 
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Hough Transform - Line endpoints

◻ For this, every cell of the accumulator array is supplemented with two 
additional coordinate pairs

213



Hough Transform – Modified accumulation

◻ Due to the discrete nature of the image and accumulator coordinates,

🞑 rounding errors usually cause the parameter curves not to intersect in a single
accumulator cell, even when the associated image lines are exactly straight

◻ for a given angle θ = i · dθ, increment

🞑 not only the main accumulator cell A(i, j)

🞑 but also the neighboring cells A(i, j−1) and A(i, j + 1), with different weights.
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Hough Transform- Effect of noise

◻ Peak gets fuzzy and hard to locate

🞑 The resulting scattering of points, or point clouds, are first coalesced into regions 
using a technique such as a morphological closing operation

🞑 Next the remaining regions must be localized, for instance using the region-finding 
technique, 

🞑 and then each region’s centroid can be utilized as the (noninteger) coordinates for the 
potential image space line. 
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Effect of noise

• Number of votes for a line of 20 points with increasing noise:
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Random points

◻ Uniform noise can lead to spurious peaks in the array
features votes
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Random points

• As the level of uniform noise increases, the maximum number of votes 
increases too:
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Finding Circles by Hough Transform

Equation of Circle: 

If radius is known:

Accumulator Array

(2D Hough Space)
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Finding Circles by Hough Transform

Equation of Circle: 

If radius is not known: 3D Hough Space!

Use Accumulator array 

What is the surface in the hough space?
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Using Gradient Information
• Gradient information can save lot of 

computation:

Edge Location

Edge Direction

Need to increment only one point in Accumulator!!

Assume radius is known:
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Real World Circle Examples

Crosshair indicates results of Hough transform,

bounding box found via motion differencing.
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Finding Coins

Original Edges (note noise)
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Finding Coins (Continued)

Penn
y

Quarters
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Finding Coins (Continued)

Coin finding sample images 
from: Vivek Kwatra

Note that because 
the quarters and 
penny are different 
sizes, a different 
Hough transform 
(with separate 
accumulators) was 
used for each circle 
size.
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Generalized Hough Transform

• Model Shape NOT described by 

equation
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Generalized Hough Transform

• Model Shape NOT described by 

equation
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Generalized Hough Transform

Find Object Center                   given edges 

Create Accumulator Array 

Initialize:

For each edge point

For each entry            in table, compute:

Increment Accumulator:

Find Local Maxima in

228
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Hough Transform: Comments

• Works on Disconnected Edges

• Relatively insensitive to occlusion

• Effective for simple shapes (lines, circles, etc)

• Trade-off between work in Image Space and Parameter Space

• Handling inaccurate edge locations:

• Increment Patch in Accumulator rather than a single point
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Practical details

• Try to get rid of irrelevant features 

🞑 Take only edge points with significant gradient magnitude

• Choose a good grid / discretization

🞑 Too coarse: large votes obtained when too many different lines correspond to a 
single bucket

🞑 Too fine: miss lines because some points that are not exactly collinear cast votes for 
different buckets

• Increment neighboring bins (smoothing in accumulator array)

• Who belongs to which line?

🞑 Tag the votes
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Hough transform: Pros

• Can deal with non-locality and occlusion

• Can detect multiple instances of a model in a single pass

• Some robustness to noise: noise points unlikely to contribute consistently 
to any single bin
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Hough transform: Cons

• Complexity of search time increases exponentially with the number of 
model parameters

• Non-target shapes can produce spurious peaks in parameter space

• It’s hard to pick a good grid size
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Summary

◻ In this lecture we have begun looking at segmentation, and in particular 
edge detection

◻ Edge detection is massively important as it is in many cases the first step 
to object recognition
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