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Motivation

◻ One of the major concern of Computer Vision is image (object)recognition

🞑 Objects are represented as a collection of pixels in an image. 

◻ Our Task: To describe the region based on the chosen representation

◻ Steps:

🞑 Image acquisition => digital image

🞑 Preprocessing => better image

🞑 Segmentation => basic features

🞑 Representation and description => advanced features

🞑 Object recognition
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Introduction

🔾 The common goal of feature extraction and representation techniques is to convert

the segmented objects into representations that better describe their main features

and attributes.

🔾 The type and complexity of the resulting representation depend on many

factors, such as

🔾 the type of image (e.g., binary, gray-scale, or color),

🔾 the level of granularity (entire image or individual regions) desired, and

🔾 the context of the application that uses the results

🔾 (e.g., a two-class pattern classifier that tells circular objects from noncircular ones

🔾 Or an image retrieval system that retrieves images judged to be similar to an example image).
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Introduction

🔾 “Feature extraction is the process by which certain features of interest within an image

are detected and represented for further processing.”

🔾 It is a critical step in most computer vision and image processing solutions because it marks

the transition from pictorial to non-pictorial (alphanumerical, usually quantitative) data

representation.

🔾 The resulting representation can be subsequently used as an input to a number of pattern

recognition and classification techniques, which will then label, classify, or recognize the

semantic contents of the image or its objects.
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Representation

◻ Representation means that we make the object information more accessible for computer-
interpretation .

◻ Two types of representation

🞑 Using boundary (External characteristics)

🞑 Using pixels of region (Internal characteristics)
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Description

◻ Description means that we quantify our representation of the object

◻ Boundary Descriptors

🞑 Geometrical descriptors : Diameter, perimeter, eccentricity, curvature

🞑 Shape Numbers

🞑 Fourier Descriptors

🞑 Statistical Moments

◻ Regional Descriptors

🞑 Geometrical descriptors: Area, compactness, Euler number

🞑 Texture

🞑 Moments of 2D Functions
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DesirableProperties of Descriptors

🔾 Two objects must have the same descriptors if and only if they have the same shape .

🔾 They should be invariant to Rotation, Scaling and Translation (RST)

🔾 A descriptor should only contain information about what makes an object unique,  or 

different from the other objects.

🔾 The quantity of information used to describe this characterization should be less  than the 

information necessary to have a complete description of the object itself.

🔾 They should be robust

🔾 Work well against Noise and Distortion

🔾 They should have low computational complexity
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𝑥 = 𝑥1, 𝑥2, … 
, 𝑥𝑛

𝑇

🔾 where n is the total number of features 
and

🔾 T indicates the transpose operation.

FEATURE VECTORS & VECTOR SPACES

🔾 A feature vector is a n × 1 array that encodes the n
features (or  measurements) of an image or object.

🔾 The array contents may be

🔾 symbolic (e.g., a string containing the name of the predominant color in the image),

🔾 numerical (e.g., an integer expressing the area of an object, in pixels),

🔾 or both.

🔾 Mathematically, a numerical feature vector x is given by
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FEATURE VECTORS & VECTOR SPACES

🔾 The feature vector is a compact representation of an

image (or object within the image), which can be

associated with

🔾 the notion of a feature space,

🔾 an n-dimensional hyperspace that allows the

visualization (for n <4) and

🔾 interpretation of the feature vectors’ contents,

their relative distances, and so on.
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Invariance & Robustness

◻ A common requirement for feature extraction and representation 
techniques  is that the features used to represent an image be invariant to 
rotation,  scaling, and translation, collectively known as RST.

◻ RST invariance ensures that a machine vision system will still be able to  
recognize objects even when they appear at different size, position within 
the  image, and angle (relative to a horizontal reference).
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Binary Object Features

🔾 𝑂𝑖 𝑥, 𝑦

= 1 0

𝑖𝑓(𝑓(𝑥, 𝑦) ∈ 𝑂𝑖)

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

🔾Area

◻ A binary object is a connected region within a binary image f (x, y), which  
will be denoted as 𝑂𝑖, i > 0 

◻ Mathematically, we can define a function 𝑂𝑖(𝑥, 𝑦) as follows:

Prof. Dr. SMM Ahsan, CSE, KUET12



12

Boundary Descriptors

◻ These techniques assume that the contour (or boundary) of an object can 
be  represented in a convenient coordinate system (Cartesian—the most  
common, polar, or tangential) and rely exclusively on boundary pixels to  
describe the region or object.

◻ Object boundaries can be represented by different techniques, ranging 
from  simple polygonal approximation methods to more elaborated 
techniques  involving piecewise polynomial interpolations such as B-spline 
curves.
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Boundary Descriptors

◻ The techniques described in this section assume that the pixels belonging 
to  the boundary of the object (or region) can be traced, starting from any  
background pixel, using an algorithm known as bug tracing that works as  
follows:

🞑 As soon as the conceptual bug crosses into a boundary pixel, it makes a  left turn 
and moves to the next pixel; 

🞑 if that pixel is a boundary pixel, the  bug makes another left turn, otherwise it turns 
right; the process is  repeated until the bug is back to the starting point.

🞑 As the conceptual bug follows the contour, it builds a list of coordinates of the 
boundary pixels being visited.
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🔾 Chain codes are alternative methods for tracing and describing a contour.

🔾 A chain code is a boundary representation technique by which “A contour is

represented as a sequence of straight line segments of specified length (usually 1)

and direction”.

🔾 The simplest chain code mechanism, also known as crack code, consists of assigning

a number to the direction followed by a bug tracking algorithm as follows: right (0),

down (1), left (2), and up (3).

🔾 By allocating numbers based on directions, the boundary of an object is reduced to

a sequence of numbers

Chain Code, Freeman Code, & Shape Number
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🔾Steps for construction chain codes

🔾Select some starting point of the boundary and represent it by its absolute

coordinates in the image

🔾Represent every consecutive point by a chain code showing transition needed to go

from current point to next point on the boundary

🔾Stop if the next point is the initial point or the end of the boundary

Freeman Chain Code
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Freeman Chain Code

◻ Issues:

🞑 The resulting chain would be quite long

🞑 any small disturbances along the boundary due 
to noise or imperfect segmentation would 
cause changes in the code

◻ Solve:

🞑 resample the boundary by selecting a larger grid 
spacing
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🔾Problem

🔾A chain code sequence depends on a starting point.

🔾Solution

🔾Treat a chain code as a circular sequence and redefine the starting point so that the

resulting sequence of numbers forms an integer of minimum magnitude after circular shift

2 2 3 0 🡪 0 2 2 3

🔾The first difference of a chain code is counting the number of direction

change (in counter clockwise) between 2 adjacent elements of the code

Prof. Dr. SMM Ahsan, CSE, KUET18
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Shape number 

◻ The freeman chain code can be converted into a Rotation-Invariant
Equivalent, known as the  first difference.

🞑 It is obtained by encoding the number of direction changes, expressed in  multiples 
of 90◦ (according to a predefined convention, for example, counter  clockwise), 
between two consecutive elements of the Freeman code.

🞑 The first difference of Smallest magnitude is obtained by treating the  resulting array 
as a circular array and rotating it cyclically until the resulting  numerical pattern 
results in the smallest possible number is known as the  Shape number of the 
contour.
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❑ The shape number is Rotation invariant and Insensitive to the starting point 
used to compute the original sequence.

❑ Figure 18.11 shows an example of a contour, its chain code, first differences,  
and shape number.
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❑ The shape number of a boundary is defined as the first difference of smallest  
magnitude

❑ The order n of a shape number is defined as the number of digits in its  
representation

Prof. Dr. SMM Ahsan, CSE, KUET21
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Algorithm for making a shape number

◻ Goal: To represent a given boundary by a shape number of order n

🞑 Step-1: Obtain the major axis of the shape and consider it as one of the  coordinate 
axis

🞑 Step-2: Find the basic (smallest) rectangle that has sides parallel to major axis and 
just covers the shape

🞑 Step-3: From possible rectangles of order n, find one which
best  approximates rectangle of step-2

🞑 Step-4: Orient the rectangle, so that its major axis coincides with that of  the shape

🞑 Step-5: Obtain the first difference chain code of minimum magnitude after  circular 
shift

Prof. Dr. SMM Ahsan, CSE, KUET22
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🔾Advantages

🔾Preserves the information of interest

🔾Provides good compression of boundary description

🔾They are translation invariant

🔾Problems

🔾Long chains of codes

🔾No invariance to Rotation and Scale

🔾Sensitive to Noise

🔾Solution

🔾Re-sample the image to a lower resolution before calculating the code

Chain Code
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Polygonal 

Approximation
🔾“Approximates the boundary by a set of connected line segments “

🔾Polygonal approximation provides a simple representation of the Planar Object
Boundary.
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🔾Mathematical Definition

🔾Let the set of points of boundary be  𝑿 = {𝒙𝟏, 𝒙𝟐, … , 𝒙𝒏}

🔾Divide this set into segment Ʌ = {𝝀𝟏, 𝝀𝟐, … , 𝝀𝒏 }

🔾Approximate each segment by straight line by minimization of objective  function

Prof. Dr. SMM Ahsan, CSE, KUET27



Polygonal 

Approximation
🔾Approximation leads to Loss of Information

🔾The number of straight line segments used determines the accuracy of the  

approximation

🔾For a closed boundary, approximation becomes exact when no.
of

segments of the polygons is equal to the no. of points in the boundary

🔾However, the goal of approximation is

🔾To capture the essence of the object shape with minimal loss

🔾Thus, it saves the no. of bytes required for boundary representation

6/3/2014 ]2ushin $hah 27

Prof. Dr. SMM Ahsan, CSE, KUET28



The Split Method (Top-down)

🔾Iteratively decompose a boundary into a set of small segments and represent the segment

by a straight line

🔾Algorithm:

🔾Step-1: Take the line segment connecting the end points of the boundary (if the boundary

is closed, consider the line segment connecting the two farthest points).

🔾Step-2: Find the boundary point with maximum distance from the line segment

🔾Step-3: If the distance is above threshold, split the segment into two

segments at that point (i.e., new vertex).

🔾Step-4: Repeat the same procedure for each of the two sub segments until the distance is

below threshold
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The Merge Method (Bottom-

up)
🔾Operate in a direction opposite to that of splitting method

🔾Algorithm:

🔾Step-1: Use the first two boundary points to define a line segment

🔾Step-2: Add a new point if it does not deviate too far from the current line

segment

🔾Step-3: Update the parameters of the line segment using least-squares

🔾Step-4: Start a newline segment when boundary points deviate too far  from the line 

segment
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The Split & Merge 

Algorithm
🔾Problems of the split and merge methods

🔾Depending on threshold , vertices of polygon not necessarily correspond  to points of 

inflections (such as corners) in the boundary

🔾Combine split and merge method

🔾After recursive subdivision (split), allow adjacent segments to be replaced

by a single segment (merge)
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Signature

s
❑ “Signature is a 1D representation of a boundary”

❑ It is obtained by representing the boundary in a polar coordinate system then

❑ Computing the distance r between each Pixel along the boundary and the Centroid of the 
region, and

❑ The angle θ subtended between a straight line connecting the boundary pixel to the 
centroid and a horizontal reference (Figure 18.12, top).

❑ The resulting plot of all computed values for 0 ≤ θ ≤ 2π (Figure 18.12, bottom) provides a
concise representation of the boundary that is translation invariant can be made rotation
invariant (if the same starting point is always selected), but is not scaling invariant.

❑ Figure 18.13 illustrates the effects of noise on the signature of a contour.
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Signature

s

6/3/2014 ]2ushin $hah 33

Prof. Dr. SMM Ahsan, CSE, KUET34



Signature

s
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Signatur

e
❑ Signatures are invariant to location, but will depend on rotation and  scaling.

❑ Rotation invariance can be improved by selecting a unique  starting point 

(e.g. based on major axis)

❑ Scale invariance can be achieved by normalizing amplitude of  signature 

(divide by variance)
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Skeleton

s
❑ Skeletons produce a one pixel wide graph that has the same basic shape of  

the region, like a stick figure of a human

❑ Hence, they provide a compact and often highly intuitive representation

❑ It can be used to analyse the geometric structure of a region

❑ Also popular tool in object recognition
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Medial Axis Transform 

(MAT)
❑ Provides skeleton of an object.

❑ The MAT of a region R with border B is defined as follows:

⮚ For each point p of R, we find its closest neighbour in B.

⮚ If p has more then one such points, it is said to belong to the medial axis (skeleton) of R .
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Medial Axis Transform 

(MAT)
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Medial Axis Transform 

(MAT)
❑ Medial Axis augmented by radius function & Transformation is invertible

❑ The medial axis of a circle is its center.

❑ the medial axis of an ellipse is its center (the midpoint of the line that  connects 
the two foci of the ellipse), too.

❑ Equilateral triangle : the segments connecting the middle of the bases and the 
center of the figure.

❑ Arbitrary triangle : the segments connecting the middle of the sides with the  
center of gravity (where all medians cross).
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Medial Axis Transform (MAT)

◻ Application

🞑 Shape matching

🞑 Animation

🞑 Dimension reduction

🞑 Solid modelling

🞑 Smoothing or sharpening of shape

🞑 Motion planning

🞑 Mesh generation
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Other Boundary Descriptors

◻ There areseveral simple geometric measures that can be useful for  
describing a boundary

◻ Length

🞑 the number of pixels along a boundary gives a rough approximation of its length

🞑 For a chain-coded curve with unit spacing

■ Length = the number of vertical and horizontal components + √2 * the  number of 
diagonal components

◻ Diameter (Major Axis)

Prof. Dr. SMM Ahsan, CSE, KUET42

𝐷𝑖𝑎𝑚 (𝐵) = max[𝐷(𝑝𝑖, 𝑝𝑗)]𝑖,𝑗



Other Boundary Descriptors

◻ Minor Axis

🞑 the line perpendicular to the major axis

◻ Eccentricity

🞑 Ratio of major axis to minor axis

Prof. Dr. SMM Ahsan, CSE, KUET43



🔾The idea behind Fourier descriptors is to traverse the pixels belonging to a  boundary, 
starting from an arbitrary point, and record their coordinates.

🔾Each value in the resulting list of coordinate pairs

(𝑥0, 𝑦0  ), (𝑥1, 𝑦1) , … , (𝑥𝐾−1𝑦𝐾−1) is then interpreted as a complex  number    𝑥𝑘 + 𝑗𝑦𝑘, for k = 0, 
1, . . . , K − 1.

🔾“The discrete Fourier transform (DFT) of this list of complex numbers is the Fourier descriptor 
of the boundary”.

🔾The inverse DFT restores the original boundary.

🔾Figure 18.14 shows a K-point digital boundary in the x-y plane and the first  two coordinate 

pairs, (𝑥0, 𝑦0) & (𝑥1, 𝑦1)
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Fourier Descriptors
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Fourier 

Descriptors
🔾Following is a way of using the Fourier transform to analyse the shape of a  

boundary.

1. The x-y coordinates of the boundary are treated as the real
and  imaginary parts of a complex number

2. Then the list of coordinates is Fourier transformed using the DFT

3. The Fourier coefficients are called the Fourier descriptors.

4. The basic shape of the region is determined by the first several coefficients, 
which represent lower frequencies

5. Higher frequency terms provide information on the fine detail of the  boundary
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Fourier 

Descriptors
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❑ chief advantages

❑ ability to represent the essence of the

corresponding boundary using very few

coefficients.

❑ This property is directly related to the ability of the

low-order coefficients of the DFT

❑ That preserve the main aspects of the boundary,

while the high-order coefficients encode the fine

details.

Prof. Dr. SMM Ahsan, CSE, KUET46



Fourier 

Descriptors
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Fourier 

Descriptors
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Properties of Fourier 

Descriptors
🔾Translation

⮚ Adding some constant to values of all coordinates

⮚ So, we only change the zero-frequency component. (Mean position only  nothing about the 
shape)

⮚ So, except  for  the  zero-frequency  component, Fourier Descriptors are translation 
invariant.

🔾Rotation

⮚ Rotation in the complex plane by angle θ is multiplication by exp(jθ)

⮚ So, rotation about the origin of the coordinate system only multiplies the  Fourier 
descriptors by exp(jθ)
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Properties of Fourier 

Descriptors
🔾Scaling

▪ It means multiplying x(k) and y(k) by some constant.

▪ Hence, Fourier descriptors are scaled by the same constant (Again, we  ignore the value of 
the zero-frequency component)

🔾Starting Point

▪ Changing starting point is equivalent to translation of the one-dimensional  signal s(k) along 
the k dimension

▪ Hence, translation in the spatial domain (in this case, k) is a phase-shift in the transform.

▪ So, the magnitude part of a(u)is invariant to the start point, and the phase  part shifts 
accordingly
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STATISTICAL FEATURES
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STATISTICAL FEATURES

◻ Histogram-based features are also referred to as amplitude features

◻ Histograms provide a concise and useful representation of the intensity  
levels in a gray-scale image.

◻ Thesimplest histogram-based descriptor is the meangray value 
of an  image, representing its average intensity m and given by

Prof. Dr. SMM Ahsan, CSE, KUET53

where 𝑟𝑗 is the jth gray level (out of a total of L possible 
values), whose  probability of occurrence is p(𝑟𝑗).



❑ The mean gray value can also be computed directly from the pixel values  from the 

original image f (x, y) of size M × N as follows:

❑ The mean is a very compact descriptor (one floating-point value per image or object) that

provides a measure of the overall brightness of the corresponding image or object.

❑ It is also RST invariant.

❑ On the negative side, it has very limited Expressiveness and Discriminative power.
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❑The standard deviation(as descriptor) σ of an image is given by

❑ where m is mean 

❑ The square of the standard deviation is the variance, which is also known as  the 
normalized second-order moment of the image.

❑ The  standard  deviation  provides a concise representation of the overall contrast.

❑ Similar to the mean, it is compact and RST invariant, but has limited 
expressiveness and discriminative power.
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❑The skew of a histogram is a measure of its asymmetry about the mean  

level. It is defined as

❑ where σ is the standard deviation.

❑ The sign of the skew indicates whether the histogram’s tail spreads to the right  

(positive skew) or to the left (negative skew).

❑ The skew is also known as the normalized third-order moment of the image.
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STATISTICAL FEATURES – Skew



STATISTICAL FEATURES – Skew

◻ If the image’s mean value (m), standard deviation (σ), and mode ( defined 
as  the histogram’s highest peak) are known, the skew can be calculated as  
follows:
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❑The energy/uniformity descriptor provides another measure of how the pixel
values are distributed along the gray-level range:

❑ images with a single constant value have maximum energy (i.e., energy = 1);

❑ images with few gray levels will have higher energy than the ones with many gray
levels. The energy descriptor can be calculated as
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STATISTICAL FEATURES – Energy



▪ Histograms also provide information about the complexity of the image, in  the 
form of entropy descriptor.

▪ The higher the entropy, the more complex the image

▪ Entropy and energy tend to vary inversely with one another. The  mathematical 
formulation for entropy is

🔾Histogram-based features and their variants are usually 
employed as texture descriptors, as we shall see in next slide.
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STATISTICAL FEATURES – Entropy



Statistical Moments
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nth moment

central moments

pqth moment of a 2-D density function pðx; yÞ

(p- q)th central moment of 2-D shape I(x,y)



Hu Moments
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Hu Moments
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Hu Moments
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REGION DESCRIPTORS
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REGION DESCRIPTORS
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perimeter p, of a region is the length of its 
boundary

Area A, of a region is defined as the number of
pixels in the region

effective diameter
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REGION DESCRIPTORS



Prof. Dr. SMM Ahsan, CSE, KUET67

REGION DESCRIPTORS - Example
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REGION DESCRIPTORS - Example



Texture Features/Descriptors
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❑ Texture can be a powerful descriptor of an image (or one of its regions).

❑ Image processing techniques usually associate the notion of texture with
image (or region) properties such as Smoothness (or its opposite, roughness),
Coarseness, and Regularity.

❑ There are three main approaches to describe texture properties in image  
processing: Structural, Spectral, and Statistical.

❑ Most application focus on the statistical approaches, due to their popularity,  
usefulness and ease of computing.

Texture Features
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🔾FIGURE 18.16 Example of images with smooth (a), coarse (b), and regular (c)  

texture. Images from the Brodatz textures data set.

🔾FIGURE 18.17 Histograms of images in Figure 18.16.
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Texture Features



❑ One of the simplest set of statistical features for texture description consists of the
following histogram-based descriptors of the image (or region): mean, variance (or its
square root, the standard deviation), skew, energy (used as a measure of uniformity), and
entropy, all of which were introduced in Section 18.5.

❑ The variance is sometimes used as a normalized descriptor of roughness (R), defined as

❑ Where, 𝜎2 is the normalized (to a [0, 1] interval) variance.

❑ R = 0 for areas of constant intensity, that is, smooth texture.
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Texture Features



• Highest uniformity has lowest entropy
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Texture Features
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Texture Features



❑ Histogram-based texture descriptors are limited by the fact that the histogram does not
carry any information about the spatial relationships among pixels.

❑ One way to circumvent this limitation consists in using an alternative representation for the
pixel values that encodes their relative position with respect to one another.

❑ One such representation is the gray-level co-occurrence matrix G, defined as a matrix
whose element g(i, j) represents the number of times that pixel pairs with intensities zi and zj
occur in image f (x, y) in the position specified by an operator d.

❑ The vector d is known as displacement vector:
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Texture Features



Gray level Co-occurrence Matrix

Displacement, d = [1, 0]
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Gray level Co-occurrence Matrix

❑ The gray-level co-occurrence matrix can be normalized as follows:

where Ng(i, j) is the normalized gray-level co-occurrence matrix. 

❑ Since all values of  Ng(i, j) lie between 0 and 1, they can be thought of as the 
probability that a pair of points satisfying d will have values (zi, zj).

❑ Co-occurrence matrices can be used to represent the texture properties of an image.

❑ Instead of using the entire matrix, more compact descriptors are preferred.

❑ These are the most popular texture-based features that can be computed from  a 
normalized gray-level co-occurrence matrix Ng(i, j):
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GLCM - descriptors
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GLCM - descriptors
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GLCM - Example

80 Image GLCM 

L = 256 and the position operator, d= “one pixel 
immediately to the right.



GLCM - Example

GLCM 

L = 256 and the position operator, d= “one pixel 
immediately to the right.



Example

• For the given binary image compute the descriptor values  

and fill them in the given table.
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Table for feature 
extraction results

Question 2 Do the results obtained for the extracted features correspond to your

expectations? Explain.

Question 3 Which of the extracted features have the best discriminative power to

help tell squares from circles? Explain.

Question 4 Which of the extracted features have the worst discriminative power

to help tell squares from circles? Explain.

Question 5 Which of the extracted features are ST invariant, that is, robust to

changes in size and translation? Explain.

Question 6 If you had to use only one feature to distinguish squares from circles,

in a ST-invariant way, which feature would you use? Why?
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Other Features/Descriptors

◻ Harris Corner detector

◻ SIFT – Scale Invariant Feature Transform

◻ SURF – Speeded Up Robust Feature

◻ ORB – Oriented FAST and Rotated BRIEF
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Feature Matching

Many slides from James Hays, Derek Hoiem, and Grauman&Leibe 2008 AAAI Tutorial



Local features: main components

1) Detection:
Find a set of distinctive key points.

1) Description: 
Extract feature descriptor around each 
interest point as vector.

1) Matching: 
Compute distance between feature 
vectors to find correspondence.

K. Grauman, B. Leibe



Distance: 0.34, 0.30, 0.40

Distance: 0.61, 1.22

How do we decide which features match?



Think-Pair-Share

◻ Design a feature point matching scheme.

◻ Two images, I1 and I2

◻ Two sets X1 and X2 of feature points

🞑 Each feature point x1 has a descriptor 

◻ Distance, bijective/injective/surjective, noise, confidence, computational 
complexity, generality…

Surjective

Bijective

Injective



Euclidean distance vs. Cosine Similarity

◻ Euclidean distance:

◻ Cosine similarity:

Wikipedia



Other Distance Measures
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Other Distance Measures



Feature Matching

◻ Criteria 1: 

🞑 Compute distance in feature space, e.g., Euclidean distance between (eg. 128-dim 
SIFT ) descriptors

🞑 Match point to lowest distance (nearest neighbor)

◻ Problems:

🞑 Does everything have a match?



Feature Matching

◻ Criteria 2: 

🞑 Compute distance in feature space, e.g., Euclidean distance between (eg. 128-dim 
SIFT) descriptors

🞑 Match point to lowest distance (nearest neighbor)

🞑 Ignore anything higher than threshold (no match!)

◻ Problems:

🞑 Threshold is hard to pick

🞑 Non-distinctive features could have lots of close matches, only one of which is 
correct



Nearest Neighbor Distance Ratio

◻



Nearest Neighbor Distance Ratio

◻ Lowe computed a probability distribution functions of ratios

◻ 40,000 keypoints with hand-labeled ground truth

Lowe IJCV 2004

Ratio threshold 

depends on your 

application’s view on 

the trade-off between 

the number of false 

positives and true 

positives!



Efficient compute cost

◻ Naïve looping: Expensive

◻ Operate on matrices of descriptors

◻ E.g., for row vectors,

features_image1 * features_image2T

produces matrix of dot product results 
for all pairs of features (cosine similarity).
What can we do for Euclidean distance?



Ref.

◻ Fundamentals of Digital Image Processing

🞑 Chris Solomon, Toby Breckon

◻ https://www.slideshare.net/Jaddu44/image-feature-extraction
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