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Motivation

One of the major concern of Computer Vision is image (object)recognition

Objects are represented as a collection of pixels in an image.

Our Task: To describe the region based on the chosen representation

Steps:
Image acquisition => digital image
Preprocessing => better image
Segmentation => basic features

Representation and description => advanced features

Object recognition
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Introduction

4

The common goal of feature extraction and representation techniques is to convert
the segmented objects into representations that better describe their main features

and attributes.

The type and complexity of the resulting representation depend on many
factors, such as

the type of image (e.g., binary, gray-scale, or color),

the level of granularity (entire image or individual regions) desired, and

the context of the application that uses the results
(e.g., a two-class pattern classifier that tells circular objects from noncircular ones

Or an image retrieval system that retrieves images judged to be similar to an example image).
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Introduction
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“Feature extraction is the process by which certain features of interest within an image
are detected and represented for further processing.”

It is a critical step in most computer vision and image processing solutions because it marks
the transition from pictorial to non-pictorial (alphanumerical, usually quantitative) data
representation.

The resulting representation can be subsequently used as an input to a number of pattern
recognition and classification techniques, which will then label, classify, or recognize the

semantic contents of the image or its objects.
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Representation

Representation means that we make the object information more accessible for computer-
interpretation .

Two types of representation

Using boundary (External characteristics)

Using pixels of region (Internal characteristics)
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Description

Description means that we quantify our representation of the object

Boundary Descriptors
Geometrical descriptors : Diameter, perimeter, eccentricity, curvature
Shape Numbers
Fourier Descriptors
Statistical Moments
Regional Descriptors
Geometrical descriptors: Area, compactness, Euler number
Texture

Moments of 2D Functions
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DesirableProperties of Descriptors

Two objects must have the same descriptors if and only if they have the same shape .
They should be invariant to Rotation, Scaling and Translation (RST)
A descriptor should only contain information about what makes an object unique, or

different from the other objects.

The quantity of information used to describe this characterization should be less than the

information necessary to have a complete description of the object itself.

They should be robust
Work well against Noise and Distortion

They should have low computational complexity
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FEATURE VECTORS & VECTOR SPACES

A  feature vector is a n X 1 array  that encodes the n
features (or measurements) of an image or object.

The array contents may be
symbolic (e.g., a string containing the name of the predominant color in the image),
numerical (e.g., an integer expressing the area of an object, in pixels),
or both.

Mathematically, a numerical feature vector x is given by

x=( Xy x9 )7

» Xn

where 71 is the total number of features
and

T indicates the transpose operation.
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FEATURE VECTORS & VECTOR SPACES

The feature vector is a compact representation of an
image (or object within the image), which can be
associated with

the notion of a feature space,

an n-dimensional hyperspace that allows the
visualization (for n <4) and

interpretation of the feature vectors’ contents,
their relative distances, and so on.
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FIGURE 18.1 Test image (a) and resulting 2D feature vectors (b).

The resulting feature vectors will be as follows:
Sq = (1024, 124)7

LC = (3209, 211)7

SC = (797, 105)"

Figure 18.1b shows the three feature vectors plotted in a 2D graph whose axes are

the selected features, namely, area and perimeter.



Invariance & Robustness
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A common requirement for feature extraction and representation
techniques is that the features used to represent an image be invariant to
rotation, scaling, and translation, collectively known as RST.

RST invariance ensures that a machine vision system will still be able to

recognize objects even when they appear at different size, position within
the image, and angle (relative to a horizontal reference).
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Binary Object Features

A binary object is a connected region within a binary image f (x, v), which
will be denoted as 0, i>0

Mathematically, we can define a function O,(x, y) as follows:

0.(x.3) if(f(x, ) € 0)

10 otherwise

Area
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Boundary Descriptors

These techniques assume that the contour (or boundary) of an object can
be represented in a convenient coordinate system (Cartesian—the most
common, polar, or tangential) and rely exclusively on boundary pixels to
describe the region or object.

Object boundaries can be represented by different techniques, ranging
from simple polygonal approximation methods to more elaborated
techniques involving piecewise polynomial interpolations such as B-spline

curves.
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Boundary Descriptors
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The techniques described in this section assume that the pixels belonging
to the boundary of the object (or region) can be traced, starting from any

background pixel, using an algorithm known as bug tracing that works as
follows:

As soon as the conceptual bug crosses into a boundary pixel, it makes a left turn
and moves to the next pixel;

if that pixel is a boundary pixel, the bug makes another left turn, otherwise it turns
right; the process is repeated until the bug is back to the starting point.

As the conceptual bug follows the contour, it builds a list of coordinates of the
boundary pixels being visited.
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Chain Code, Freeman Code, & Shape Number
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Chain codes are alternative methods for tracing and describing a contour.

A chain code is a boundary representation technique by which “A contour is
represented as a sequence of straight line segments of specified length (usually 1)
and direction”.

The simplest chain code mechanism, also known as crack code, consists of assigning
a number to the direction followed by a bug tracking algorithm as follows: right (0),
down (1), left (2), and up (3).

By allocating numbers based on directions, the boundary of an object is reduced to
a sequence of numbers

Prof. Dr. SMM Ahsan, CSE, KUET



Freeman Chain Code

Steps for construction chain codes

Select some starting point of the boundary and represent it by its absolute
coordinates in the image

Represent every consecutive point by a chain code showing transition needed to go
from current point to next point on the boundary

Stop if the next point is the initial point or the end of the boundary

Chain Code:
0

Chain Code:
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Freeman Chain Code

Issues: 441 1]
The resulting chain would be quite long . -
any small disturbances along the boundary due o
to noise or imperfect segmentation would . .
cause changes in the code @ ®)
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FIGURE 18.10 Chain code and Freeman code for a contour: (3a) original contour;

{b) subsampled version of the contour; {c) chain code representation; (d) Freeman code
representation.
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Chain Code

Problem

A chain code sequence depends on a starting point.

Solution

Treat a chain code as a circular sequence and redefine the starting point so that the

resulting sequence of numbers forms an integer of minimum magnitude after circular shift

2 2 3 0 0 2 2 3

The first difference of a chain code is counting the number of direction

change (in counter clockwise) between 2 adjacent elements of the code
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Shape number

The freeman chain code can be converted into a Rotation-Invariant
Equivalent, known as the first difference.
It is obtained by encoding the number of direction changes, expressed in multiples

of 90° (according to a predefined convention, for example, counter clockwise),
between two consecutive elements of the Freeman code.

The first difference of Smallest magnitude is obtained by treating the resulting array
as a circular array and rotating it cyclically until the resulting numerical pattern
results in the smallest possible number is known as the Shape number of the

contour.
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Shape Number

The shape number is Rotation invariant and Insensitive to the starting point
used to compute the original sequence.

Figure 18.11 shows an example of a contour, its chain code, first differences,
and shape number.

0 0 0 Chancoce: 0 00323212 1
oo *Is B —
-2—- T' 5 C003232121 24—T—.c

1 3 First ditference: 3 (3 5 5 3 -1 5 3 ‘1 E& 3
N-—8-
2 Shapenumber: 0 0 33133133

FIGURE 18.11 Chain code, first differences, and shape number.
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Shape Number

The shape number of a boundary is defined as the first difference of smallest
maghnitude

The order n of a shape number is defined as the number of digits in its

representation
Order 8

[~J
[t
[t

Chaincode; 0 0 3 3 2 2 1 1 03032211 O 003
Difference: 3 0 3 0 3 0 3 0 331 330310 3003 300 3

Shapeno: 0 3 0 3 0 3 0 3 03033133 00330033
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Algorithm for making a shape number
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Goal: To represent a given boundary by a shape number of order n

Step-1: Obtain the major axis of the shape and consider it as one of the coordinate
axis

Step-2: Find the basic (smallest) rectangle that has sides parallel to major axis and
just covers the shape

Step-3: From possible rectangles of order n, find one which
best approximates rectangle of step-2

Step-4: Orient the rectangle, so that its major axis coincides with that of the shape

Step-5: Obtain the first difference chain code of minimum magnitude after circular
shift
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Chain Code

Advantages
Preserves the information of interest
Provides good compression of boundary description
They are translation invariant
Problems
Long chains of codes
No invariance to Rotation and Scale
Sensitive to Noise
Solution

Re-sample the image to a lower resolution before calculating the code
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Chain Code's _

Prof. Dr. SMM Ahsan, CSE, KUET

Teeile
':.T. T |

U SRR

. 4 S

o518 4 1 3

1 i’ e :*

II i.’- 21 ih
]I-‘—- .il—ijl »'h. ./;/

SIS DN

a b

c d

FIGURE 11.2

(a) Digital
boundary with
resampling grid
superimposed.
(hy Result of
resampling.

(¢) 4-directional
chain code.
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Chain code : The first

1 Te Example:
¢ dl%eﬁllf 3 1 - a chain coc.le: 10103322
5 & \ S 0T 2 - The fp‘st dlﬂ‘er.ence = 3133030
s ¢ 053 3 - Tl"eatmg a chain code as a
| 150 3 circular sequence. we get
3 537 % the first difference = 33133030
322 3B
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Polygonal

Approximation
“Approximates the boundary by a set of connected line segments “

Polygonal approximation provides a simple representation of the Planar Object
Boundary.
Mathematical Definition
Let the set of points of boundary be X ={x,, x,, ..., x,}
Divide this setinto segment A= {4, 4,, ..., 4,}

Approximate each segment by straight line by minimization of objective function

J = X;d(x;, lj)' X; € A;
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Polygonal

Approximation
Approximation leads to Loss of Information

The number of straight line segments used determines the accuracy of the

approximation

For a closed boundary, approximation becomes exact when no.
of

segments of the polygons is equal to the no. of points in the boundary

However, the goal of approximation is

To capture the essence of the object shape with minimal loss

Thus, it saves the no. of bytes required for boundary representation
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The Split Method (Top-down)

into a set of small segments and represent the segment

by a straight line

Algorithm:
Step-1: Take the line segment connecting the end points of the boundary (if the boundary

is closed, consider the line segment connecting the two farthest points).

Step-2: Find the boundary point with maximum distance from the line segment

Step-3: If the distance is above threshold, split the segment into two

segments at that point (i.e., new vertex).

Step-4: Repeat the same procedure for each of the two sub segments until the distance is

below threshold
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FIGURE 11.4
(a) Original
boundary.
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divided into
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on extreme
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(d) Resulting
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The Merge Method (Bottom-
up)

Operate in a direction opposite to that of splitting method
Algorithm:
Step-1: Use the first two boundary points to define a line segment

Step-2: Add a new point if it does not deviate too far from the current line

segment

Step-3: Update the parameters of the line segment using least-squares
Step-4: Start a newline segment when boundary points deviate too far from the line

segment
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The Split & Merge

Igorithm
Problems of the lit and merge methods

Depending on threshold , vertices of polygon not necessarily correspond to points of

inflections (such as corners) in the boundary

Combine split and merge method

After recursive subdivision (split), allow adjacent segments to be replaced

by a single segment (merge)
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Signature

S
“Signature is a 1D representation of a boundary”

It is obtained by representing the boundary in a polar coordinate system then

Computing the distance r between each Pixel along the boundary and the Centroid of the
region, and

The angle ¥ subtended between a straight line connecting the boundary pixel to the
centroid and a horizontal reference (Figure 18.12, top).

The resulting plot of all computed values for 0 £ & < 2 (Figure 18.12, bottom) provides a
concise representation of the boundary that is translation invariant can be made rotation
invariant (if the same starting point is always selected), but is not scaling invariant.

Figure 18.13 illustrates the effects of noise on the signature of a contour.
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Signature
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FIGURE 18.13 Effect of noise on signatures for two different objects. Redrawn from
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Signature

Iberian Peninsula Radial Signature
DC tarm only Approximate Signature N=0
N=5 Approximate Signature N=5
Q .
N=15 Approximate Signature N=15

[ 7 o

Figure 9.3  Anexample of the use of the radial Fourier expansion technique to approximate the shape
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Signatur

v
Signatures are invariant to location, but will depend on rotation and scaling.

Rotation invariance can be improved by selecting a unique starting point

(e.g. based on major axis)

Scale invariance can be achieved by normalizing amplitude of signature

(divide by variance)
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Skeleton

S
Skeletons produce a one pixel wide graph that has the same basic shape of

the region, like a stick figure of a human

Hence, they provide a compact and often highly intuitive representation
It can be used to analyse the geometric structure of a region

Also popular tool in object recognition
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Medial Axis Transform
(MAT)

Provides skeleton of an object.

The MAT of a region R with border B is defined as follows:
For each point p of R, we find its closest neighbour in B.

If p has more then one such points, it is said to belong to the medial axis (skeleton) of R..

N, & . & - - Elbf:

RN Sl o FIGURE 11.7
Medial axes
(dashed) of three
simple regions.

S
v
I
I
R

H -
PN S s ™
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Medial Axis Transform
(MATD)

Step-1: Iteratively compute /* (x. y) as follows until /* (x, )= /7 (x,»):
T 23)=7"(&¥) +min(f"'_1 (p,q))
V(p.q) such that d((x.y).(p.q))<1
Step-2: Medial axis 1s given by all points such that:
[ (%)= " (p.q)
V(p.q) such that d ((\ 1)(pq)) 2L

1 (1|11 |1[1f R |l |0 [T
g |9 (|2 |2 |2 g 1022222
AEREAE I EE t |23 |82 |2
1 (4|14 (2|2 ila|2|2|2]|1
a4 |4 |4 4|4 HENE LN NG
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Medial Axis Transform
(MAT)

Medial Axis augmented by radius function & Transformation is invertible

The medial axis of a circle is its center.

the medial axis of an ellipse is its center (the midpoint of the line that connects
the two foci of the ellipse), too.

Equilateral triangle : the segments connecting the middle of the bases and the
center of the figure.

Arbitrary triangle : the segments connecting the middle of the sides with the
center of gravity (where all medians cross). K | (T J) .

2
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Medial Axis Transform (MAT)

Application
Shape matching
Animation
Dimension reduction
Solid modelling
Smoothing or sharpening of shape
Motion planning

Mesh generation
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Other Boundary Descriptors

There areseveral simple geometric measures that can be useful for
describing a boundary

Length

the number of pixels along a boundary gives a rough approximation of its length
For a chain-coded curve with unit spacing

Length = the number of vertical and horizontal components + V2 * the number of
diagonal components

Diameter (Major Axis)

Diam (B) = m%}![D(Pil p;ll
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Other Boundary Descriptors

Minor AXxis

the line perpendicular to the major axis

Eccentricity

Ratio of major axis to minor axis
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Fourier Descriptors

The idea behind Fourier descriptors is to traverse the pixels belonging to a boundary,
starting from an arbitrary point, and record their coordinates.

Each value in the resulting list of coordinate  pairs

(X, Vo ), (X3, V1) 5 oo, (Xx_1Vi_q) is then interpreted as a complex number x, +jy,, fork=0,
1,...,K-1.

“The discrete Fourier transform (DFT) of this list of complex numbers is the Fourier descriptor
of the boundary”.

The inverse DFT restores the original boundary.

Figure 18.14 shows a K-point digital boundary in the x-y plane and the first two coordinate
pairs, (Xor Vo) & (%1, 1)
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Fourier

Descriptors
Following is a way of using the Fourier transform to analyse the shape of a

boundary.

The X-y coordinates of the boundary are treated as the real
and imaginary parts of a complex number

Then the list of coordinates is Fourier transformed using the DFT
The Fourier coefficients are called the Fourier descriptors.

The basic shape of the region is determined by the first several coefficients,
which represent lower frequencies

Higher frequency terms provide information on the fine detail of the boundary
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Fourier
Descriptors

chief advantages

46

ability to represent the essence of the
corresponding boundary using very few
coefficients.

This property is directly related to the ability of the

low-order coefficients of the DFT

That preserve the main aspects of the boundary,
while the high-order coefficients encode the fine

details.
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Fourier
DESCm

1434

72 36

ab

cd
e f &h

286 | 144

18 8

FIGURE 11.19 (a) Boundary of a human chromosome (2868 points). (b)—(h) Boundaries reconstructed using 1434,

286, 144,72, 36, 18, and 8 Fourier descriptors, respectively. These numbers are approximately 50%. 10%, 5%

v Sy
o, 2.0 0,

1.25%, 0.63%, and 0.28% of 2868, respectively. Images (b)—(h) are shown as negatives to make the boundaries

easier to see.
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Properties of Fourier
Deseriptors

Adding some constant to values of all coordinates

So, we only change the zero-frequency component. (Mean position only nothing about the
shape)

So, except for the zero-frequency component, Fourier Descriptors are translation
invariant.

Rotation

49

Rotation in the complex plane by angle 8 is multiplication by exp(j0)

So, rotation about the origin of the coordinate system only multiplies the Fourier
descriptors by exp(jO)
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Properties of Fourier

. Descriptors
Scaling

It means multiplying x(k) and y(k) by some constant.

Hence, Fourier descriptors are scaled by the same constant (Again, we ignore the value of
the zero-frequency component)

Starting Point

Changing starting point is equivalent to translation of the one-dimensional signal s(k) along
the k dimension

Hence, translation in the spatial domain (in this case, k) is a phase-shift in the transform.

So, the magnitude part of a(u)is invariant to the start point, and the phase part shifts
accordingly
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Transformation Boundary Fourier Descriptor
[dentity s(k) | a(u)

Rotation 5,(k) = s(k)e” a,(1) = a(u)e"
Translation sik) = s(k) + Ay au) = a(u) + A,,0()
Scaling s(k) = as(k a(u) = aalu)

Starting point 5,(k) = s(k — ko) a,(u) = au)e kK
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STATISTICAL FEATURES




STATISTICAL FEATURES

Histogram-based features are also referred to as amplitude features

Histograms provide a concise and useful representation of the intensity
evels in a gray-scale image.

Thesimplest histogram-based descriptor IS the meangray value
of an image, representing its average intensity m and given by

p(1;)

L—1
m = Z r,p(r;) b : : :
=0

=

where r;is the jth gray level (out of a total of L possible { { l
values), whose probability of occurrence is p(r;).
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STATISTICAL FEATURES - Mean

J The mean gray value can also be computed directly from the pixel values from the

original image f (x, y) of size M x N as follows:

(I

1 M—-1 N—

m=——>» > f(x,
MN 2= Of( »)

y:

The mean is a very compact descriptor (one floating-point value per image or object) that

provides a measure of the overall brightness of the corresponding image or object.

It is also RST invariant.

On the negative side, it has very limited Expressiveness and Discriminative power.
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STATISTICAL FEATURES — Std. Dev.

A The standard deviation(as descriptor) o of an image is given by

o =[2G, =m) p(r)

where m is mean

The square of the standard deviation is the variance, which is also known as the
normalized second-order moment of the image.

The standard deviation provides a concise representation of the overall contrast.
Similar to the mean, it is compact and RST invariant, but has limited

expressiveness and discriminative power.
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STATISTICAL FEATURES — Skew

AThe skew of a histogram is a measure of its asymmetry about the mean

> 0, —m) p(r)

level. It is defined as .
skew =

O

where o is the standard deviation.

The sign of the skew indicates whether the histogram’s tail spreads to the right

(positive skew) or to the left (negative skew).

The skew is also known as the normalized third-order moment of the image.
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STATISTICAL FEATURES — Skew

If the image’s mean value (m), standard deviation (o), and mode ( defined
as the histogram’s highest peak) are known, the skew can be calculated as
follows:

m —mode

skew =
o
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STATISTICAL FEATURES - Energy

1 The energy/uniformity descriptor provides another measure of how the pixel
values are distributed along the gray-level range:

J images with a single constant value have maximum energy (i.e., energy = 1);

J images with few gray levels will have higher energy than the ones with many gray
levels. The energy descriptor can be calculated as

energy = Z[P(?}')]Z

58 Prof. Dr. SMM Ahsan, CSE, KUET



STATISTICAL FEATURES - Entropy

= Histograms also provide information about the complexity of the image, in the
form of entropy descriptor.

= The higher the entropy, the more complex the image

= Entropy and energy tend to vary inversely with one another. The mathematical
formulation for entropy is
L-1

entropy = — Z P(?‘j‘) 1082[?(??)]

j=0

Histogram-based features and their variants are usually
employed as texture descriptors, as we shall see in next slide.
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Statistical Moments

nth moment ~
m, = J x"p(x)dx

central moments

M= [ G-l dx

pqth moment of a 2-D density function pdx; yp

Mpg = rL [1 xPyap(x, y)dxdy
(p- 9)th central moment of 2-D shape I(x,y)

M, = J [ (% = p)’(y — 1, ) I (x, y) dx dy
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The (p — g)th normalized central moment is defined as

Tpq =

My,

My

where B :f? +landp+q > 2



Hu Moments

Ay = 150+ 1>
2
A; = (ﬂzu - T."UE) ‘|'47ﬁ1
. 2
As = (M50 —3m3)" + (3m5, — M3)
A

(
g = (M5 + 7?1;:}2 + (1, + ﬂ}u)l

(M30 = 3m12) (M30 + M12) [(M30 + Thz)z —3(my — T?u_!,)z] + (321 — M03) (M3 + M121)
X [3(m30 + Thz}l — (M5 + ﬂzl)z]
As = (M9 — Mo2) (M2 + Thu}z — (1 + ﬂﬂ})l] + 47, (m21 + M93) (712 + M30)
A7 = (315 — Mg3) (M30 + M) [(M30 + ”12)2 —3(my; + 7?.11}2] + (3751 — M30) (155 + My3)
X [3(m30 + Thz}l — (M3 + 71.11)2]
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Hu Moments
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Hu Moments

—
TABLE 11.5
Moment invariants for the images in Fig. 11.37.
Moment “;_‘E: Translated ~ HalfSize  Mirrored  Rotated 45°  Rotated 90°
by 2.8662 28662 28664 28662 28661 2. 8662
b, 7.1265 1.1265 1.1257 7.1265 7.1266 7.1265
s 104109 104109 10.4047 104109 10.4115 10,4109
b, 10.3742 100.3742 10.3719 10.3742 10.3742 10.3742
s 21.3674 21.3674 21.3924 21.3674 21.3663 21.3674
b 13.9417 13.9417 13.9383 13.9417 13.9417 13.9417
b =20. 7809 =20.7809 =20.7724 20,7809 -2(.7813 =20.7809
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REGION DESCRIPTORS




REGION DESCRIPTORS

]
2
compactness = P perimeter p, of a region is the length of its
A boundary
circularitv = 4mA Area A, of a region is defined as the number of
y p2 pixels in the region

effective diameter

Binary
region

. C
eccentricity = — Centroid

of region
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REGION DESCRIPTORS

66

Table 9.1 Some common, single-parameter descriptors for approximate shape in 2-D

Measure Definition Circle Square Rectangle as b f a— 00
4 A
Form factor M 1 n/4 —0
Perimeter?
4 % Area
Roundness _ 1 2/n — 10
m x MaxDiameter”
) MaxDiameter
Aspect ratio — 1 1 — 00
MinDiameter
. A
Solidity - A 1 1 — 0
ConvexArea
. TotalArea . .
Extent - T ," 4 1 indeterminate
Area Bounding Rectangle
4 % Area)/m
Compactness \/( : )/ 1 \/ 2/n —0
MaxIiameter
Convexity Convex Perimeter l | !

Perimeter
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REGION DESCRIPTORS - Example

o I *

Descriptor
Compactness 10.1701 42.2447 15.9836 13.2308
Circularity 1.2356 0.2975 0.7862 0.9478

Eccentricity 0.0411 0.0636 0 0.8117

67 Prof. Dr. SMM Ahsan, CSE, KUET



REGION DESCRIPTORS - Example

. large coins
small coins /
{ \"-
S
= Kkey
Q 05 ™~ |
w
g /drlll
ot
O
(1R O i J
0 0.5 1

RELATIVE AREA
()

Figure 9.2 From left to right: (a) original image; (b) binary image after thresholding and
morphological processing; (c) the normalized area and the form factor of each object in (b) are
plotted in a 2-D feature space
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Texture Features/Descriptors




Texture Features

70

Texture can be a powerful descriptor of an image (or one of its regions).

Image processing techniques usually associate the notion of texture with

image (or region) properties such as Smoothness (or its opposite, roughness),
Coarseness, and

There are three main approaches to describe texture properties in image
processing: Structural, Spectral, and Statistical.

Most application focus on the statistical approaches, due to their popularity,
usefulness and ease of computing.
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OFIGURE 18.16 Example of images with smooth (a), coarse (b), and regular (c)
texture. Images from the Brodatz textures data set.

Texture Features
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10.000,

12,

OFIGURE 18.17 Histograms of images in Figure 18.16.
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Texture Features

One of the simplest set of statistical features for texture description consists of the
following histogram-based descriptors of the image (or region): mean, variance (or its
square root, the standard deviation), skew, energy (used as a measure of uniformity), and
entropy, all of which were introduced in Section 18.5.

The variance is sometimes used as a normalized descriptor of roughness (R), defined as

R=1-

1+ o*
Where, g?is the normalized (to a [0, 1] interval) variance.

R = 0 for areas of constant intensity, that is, smooth texture.
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Texture Features

Highest uniformity has lowest entropy

Texture Mean Standard Roughness Skew Uniformity  Entropy
deviation R

Smooth 147.1459 47.9172 0.0341 —0.4999 0.0190 5.9223

Coarse 138.8249 81.1479 0.0920 —1.9095 0.0306 5.8405

Regular 79.9275 89.7844 0.1103 10.0278 0.1100 4.1181
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Texture Features

abec

FIGURE 11.29

The white squares
mark, from left

to right, smooth,
coarse, and regular
textures. These are
optical microscope
images of a
superconductor,
human cholesterol,
and a microproces-
sor. (Courtesy of
Dr. Michael W.
Davidson, Florida
State University.)

Statistical texture measures for the subimages in Fig. 11.29.

Standard

Texture Mean deviation R (normalized) 3rd moment  Uniformity Entropy
Smooth 82.64 11.79 0.002 =(0.105 0.026 5.434
Coarse 143.56 74.63 0.079 —0.151 0.005 7.783
Regular 99.72 33.73 0.017 0.750 0.013 6.674
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Texture Features

75

Histogram-based texture descriptors are limited by the fact that the histogram does not
carry any information about the spatial relationships among pixels.

One way to circumvent this limitation consists in using an alternative representation for the
pixel values that encodes their relative position with respect to one another.

One such representation is the gray-level co-occurrence matrix G, defined as a matrix
whose element g(i, j) represents the number of times that pixel pairs with intensities zi and zj
occur in image f (x, y) in the position specified by an operator d.

The vector d is known as displacement vector:
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Gray level Co-occurrence Matrix
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Gray level Co-occurrence Matrix

The gray-level co-occurrence matrix can be normalized as follows:

Ng(i,)) = %290, ))

where Ng(i, j) is the normalized gray-level co-occurrence matrix.

Since all values of Ng(i, j) lie between 0 and 1, they can be thought of as the
probability that a pair of points satisfying d will have values (zi, zj).

Co-occurrence matrices can be used to represent the texture properties of an image.

Instead of using the entire matrix, more compact descriptors are preferred.

These are the most popular texture-based features that can be computed from a
normalized gray-level co-occurrence matrix Ng(i, j):
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GLCM - descriptors

Maximum probability = max Ng(i, j)

L. J
Energy = Z Z Né (i. j)
|

Entropy = — Z Z Ngl(i. j) logy, Ngli. j)

J
Contrast = E E (i — j)ZNg(i- J)
J

{

N (i i
Homogeneity = E E 1 g(.l j).
T L

> i 2> i) G—p)Ng(i. )

Oi0;

Correlation =

where ¢;, 1 ; are the means and o;, o; are the standard deviations of the row and
column sums Ng(i) and Ng(/), defined as

Ng(i) = ~ Ngli. j) (18.35)

I
Ne(j) =S Ny, j) (18.36)
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GLCM - descriptors

Prof. Dr. SMM Ahsa

Descriptor
Maximum
probability

Correlation

Contrast

Uniformity (also
called Energy)

Homogeneity

Entropy

Explanation
Measures the strongest response of G.
The range of values is [0, 1].

A measure of how correlated a pixel is
to its neighbor over the entire image. The
range of values is 1 to =1 corresponding
to perfect positive and perfect negative
correlations. This measure i1s not defined
if either standard deviation is zero.

A measure of intensity contrast between a
pixel and its neighbor over the entire image.
The range of values is 0 (when G is constant)
to (K -1)~.

A measure of uniformity in the range [0, 1].
Uniformity is 1 for a constant image.

Measures the spatial closeness to the diagonal
of the distribution of elements in G. The range
of values is [0, 1], with the maximum being
achieved when G is a diagonal matrix.

Measures the randomness of the elements of
G. The entropy is 0 when all p;/s are 0, and is
maximum when the p;’s are uniformly distrib-
uted. The maximum value 1s thus 2log, K.



G LCM - Exa m ple L = 256 and the position operator, d= “one pixel

immediately to the right.




G LCM - Exa m ple L = 256 and the position operator, d= “one pixel

immediately to the right.

GLCM

Descriptors evaluated using the co-occurrence matrices displayed as images in Fig. 11.32.

Normalized Maimum
Co-occurrence Probability Correlation Contrast Uniformity =~ Homogeneity Entropy
Matrix -
G, /n, 0.00006 =0.0005 10838 0.00002 0.0366 15,75
G, /n, 0.01500 0.9650 00570 0.01230 0.0824 06.43

G,/n, 0.06360 0.8798 01356 000450 0.2048 13.58



Example

For the given binary image compute the descriptor values
and fill them in the given table.
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Table for feature

Object

Area

Centroid
(row, col)

Orientation
(degrees)

Euler
number

Eccentricity

Aspect
ratio

Perimeter

Thiness
ratio

Top left square

Big circle

Small circle

Top right square|

Question 2 Do the results obtained for the extracted features correspond to your
expectations? Explain.

Question 3 Which of the extracted features have the best discriminative power to

help tell squares from circles? Explain.

Question 4 Which of the extracted features have the worst discriminative power

to help tell squares from circles? Explain.

Question 5 Which of the extracted features are ST invariant, that is, robust to
changes in size and translation? Explain.

Question 6 If you had to use only one feature to distinguish squares from circles,

orof. Dr. smnjlrlr?sa%&p\(@{jrant way, which feature would you use? Why?




Other Features/Descriptors

Harris Corner detector

SIFT — Scale Invariant Feature Transform
SURF — Speeded Up Robust Feature
ORB — Oriented FAST and Rotated BRIEF

Prof. Dr. SMM Ahsan, CSE, KUET



Feature Matching

Many slides from James Hays, Derek Hoiem, and Grauman&Leibe 2008 AAAI Tutorial



Local features: main components

1) Detection:
Find a set of distinctive key points.

1) Description:
Extract feature descriptor around each
interest point as vector.

1
X, x, =[x",0 ,x{’]

1) Matching:
Compute distance between feature
vectors to find correspondence.

K. Grauman, B. Leibe



How do we decide which features matck

P e 2 R

Distance: 0.34, 0.30, 0.40
Distance: 0.61, 1.22



Think-Pair-Share

Design a feature point matching scheme.

F

Two images, I, and /,

Two sets X; and X, of feature points . .
= A
Each feature point x, has a descriptor X, =[x L0 ,x;7]

Distance, bijective/injective/surjective, noise, confidence, computational
complexity, generality...



Euclidean distance vs. Cosine Similarity

Euclidean distance:

d(p,q) = d(q,p) = \/(Q1 —p1)’ + (@2 —p2)’+ -+ (¢ — Pn)’
= % i(% —Pz')z-
=1

la — p| :\/(q—p)-(q—p)-

Cosine similarity:

a-b = [af,]b], cos 0

A-B 0 = arccos(z+y/1z11y1)

1A[l2 (Bl

similarity = cos(f) =

Wikipedia



Other Distance Measures

Minkowski-form distance:
1/r
dr (H, K) = (Z |hy — ll.'i|r)

Histogram intersection:

> ;min(hj, k)

dn(H, K) =1 — =1

Kullback-Leibler divergence and Jeffrey divergence: The Kullback-Leibler (K-L) divergence [14] is
defined as:

dir(H, K) = Z hiloggl—: .

o

4

Yy~ statistics:

) (hy — my)
dy2(H,K) = Z — , my = hith

%]
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Other Distance Measures

Quadratic-form distance: this distance was suggested for color based retrieval in [17]:

ds(H.K)=1/(h - )TA(h— k) |
Match distance:

dy(H,K) = Z |ht — £1| :

i

Kolmogorov-Smirnov distance:

dis(H, K) = maxﬂhg — £t|) .

mose g
EMD(P, Q) = Z‘:‘ﬂﬁz"'? jf‘}
i=1 j:l L)




Feature Matching

Criteria 1:

Compute distance in feature space, e.g., Euclidean distance between (eg. 128-dim
SIFT ) descriptors

Match point to lowest distance (nearest neighbor)

Problems:

Does everything have a match?



Feature Matching

Criteria 2:

Compute distance in feature space, e.g., Euclidean distance between (eg. 128-dim
SIFT) descriptors

Match point to lowest distance (nearest neighbor)

lgnore anything higher than threshold (no match!)

Problems:
Threshold is hard to pick

Non-distinctive features could have lots of close matches, only one of which is
correct



Nearest Neighbor Distance Ratio

Compare distance of closest (NN 1) and second-closest (NN2) feature vector
neighbor.

NN1
If NNT = NN2, ratio N2 will be = 1 -> matches too close.

As NN1 << NN2, ratio Al tends to O.
NN2

Sorting by this ratio puts matches in order of confidence.

Threshold ratio — but how to choose?



Nearest Neighbor Distance Ratio

Lowe computed a probability distribution functions of ratios
40,000 keypoints with hand-labeled ground truth

0.8
0.7
0.6 PDF for correct matches —— Ratio threshold
PDF for incorrect matches - depends on your
0.5 application’s view on
L o4 the trade-off between
o ; the number of false
0.3 o positives and true
TN positives!
0.2 [ \\ '
0.1 / I
P / W_
o L = s W | B

0 01 02 03 04 05 06 07 08 09 1
Ratio of distances (closest/next closest)

Lowe IJCV 2004



Efficient compute cost

Naive looping: Expensive

Operate on matrices of descriptors

E.g., for row vectors,

features imagel * features image2’

produces matrix of dot product results
for all pairs of features (cosine similarity).
What can we do for Euclidean distance?



Ref.

Fundamentals of Digital Image Processing

Chris Solomon, Toby Breckon
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