Image Feature Representation & Description Amartya Kundu Durjoy Dept. of CSE, UGV #### **Motivation** - One of the major concern of Computer Vision is image (object)recognition - Objects are represented as a collection of pixels in an image. - Our Task: To describe the region based on the chosen representation - Steps: - Image acquisition => digital image - Preprocessing => better image - Segmentation => basic features - Representation and description => advanced features - Object recognition ### **Representation & Description** Recall the Intro lecture Image Processing Restoration Image Segmentation Enhancement Feature Image Extraction Acquisition Keypoint descriptor Image gradients Object Recognition **Problem Domain** Image Compression #### Introduction - The common **goal** of feature extraction and representation techniques is to *convert* the segmented objects into representations that better describe their main features and attributes. - The type and complexity of the resulting representation depend on many factors, such as - the type of image (e.g., binary, gray-scale, or color), - the level of granularity (entire image or individual regions) desired, and - the context of the application that uses the results - (e.g., a two-class pattern classifier that tells circular objects from noncircular ones - Or an image retrieval system that retrieves images judged to be similar to an example image). #### Introduction - "Feature extraction is the process by which certain features of interest within an image are detected and represented for further processing." - O It is a critical step in most computer vision and image processing solutions because it marks the transition from pictorial to non-pictorial (alphanumerical, usually quantitative) data representation. - The resulting representation can be subsequently used as an input to a number of pattern recognition and classification techniques, which will then *label*, *classify*, or *recognize* the semantic contents of the image or its objects. ### Representation - Representation means that we make the object information more accessible for computer-interpretation. - Two types of representation - Using boundary (External characteristics) - Using pixels of region (Internal characteristics) ### **Description** - Description means that we quantify our representation of the object - Boundary Descriptors - Geometrical descriptors: Diameter, perimeter, eccentricity, curvature - Shape Numbers - Fourier Descriptors - Statistical Moments - Regional Descriptors - Geometrical descriptors: Area, compactness, Euler number - ? Texture - Moments of 2D Functions ### **Desirable Properties of Descriptors** - Two objects must have the same descriptors if and only if they have the same shape. - They should be invariant to Rotation, Scaling and Translation (RST) - A descriptor should only contain information about what makes an object unique, or different from the other objects. - The quantity of information used to describe this characterization should be *less than* the information necessary to have a complete description of the object itself. - They should be robust - Work well against Noise and Distortion - They should have low computational complexity #### **FEATURE VECTORS & VECTOR SPACES** - A feature vector is a n × 1 array that encodes the n features (or measurements) of an image or object. - The array contents may be - o symbolic (e.g., a string containing the name of the predominant color in the image), - onumerical (e.g., an integer expressing the area of an object, in pixels), - or both. - Mathematically, a numerical feature vector x is given by $$x = (x_1, x_2, ...)^T$$ - where *n* is the total number of features and - \bigcirc T indicates the *transpose* operation. #### **FEATURE VECTORS & VECTOR SPACES** - The feature vector is a compact representation of an image (or object within the image), which can be associated with - the notion of a feature space, - o an n-dimensional hyperspace that allows the visualization (for n < 4) and - interpretation of the feature vectors' contents, their relative distances, and so on. FIGURE 18.1 Test image (a) and resulting 2D feature vectors (b). The resulting feature vectors will be as follows: $Sq = (1024, 124)^T$ $LC = (3209, 211)^T$ $SC = (797, 105)^T$ Figure 18.1b shows the three feature vectors plotted in a 2D graph whose axes are the selected features, namely, area and perimeter. #### **Invariance & Robustness** - A common requirement for feature extraction and representation techniques is that the features used to represent an image be invariant to rotation, scaling, and translation, collectively known as RST. - RST invariance ensures that a machine vision system will still be able to recognize objects even when they appear at different size, position within the image, and angle (relative to a horizontal reference). ### **Binary Object Features** - A binary object is a connected region within a binary image f(x, y), which will be denoted as O_i , i > 0 - Mathematically, we can define a function $O_i(x, y)$ as follows: Area ### **Boundary Descriptors** These techniques assume that the contour (or boundary) of an object can be represented in a convenient coordinate system (Cartesian—the most common, polar, or tangential) and rely exclusively on boundary pixels to describe the region or object. Object boundaries can be represented by different techniques, ranging from simple polygonal approximation methods to more elaborated techniques involving piecewise polynomial interpolations such as B-spline curves. ### **Boundary Descriptors** - The techniques described in this section assume that the pixels belonging to the boundary of the object (or region) can be traced, starting from any background pixel, using an algorithm known as bug tracing that works as follows: - As soon as the conceptual bug crosses into a boundary pixel, it makes a left turn and moves to the next pixel; - if that pixel is a boundary pixel, the bug makes another left turn, otherwise it turns right; the process is repeated until the bug is back to the starting point. - As the conceptual bug follows the contour, it builds a list of coordinates of the boundary pixels being visited. ### Chain Code, Freeman Code, & Shape Number - O Chain codes are alternative methods for *tracing* and *describing a contour*. - A chain code is a boundary representation technique by which "A contour is represented as a sequence of straight line segments of specified length (usually 1) and direction". - The simplest chain code mechanism, also known as crack code, consists of assigning a number to the direction followed by a bug tracking algorithm as follows: right (0), down (1), left (2), and up (3). - O By allocating numbers based on directions, the boundary of an object is reduced to a sequence of numbers #### Freeman Chain Code - OSteps for construction chain codes - OSelect some starting point of the boundary and represent it by its absolute coordinates in the image - ORepresent every consecutive point by a chain code showing transition needed to go from current point to next point on the boundary - OStop if the next point is the *initial point* or the *end of the boundary* Chain Code: 0, 0, 7, 7, 5, 6, 5, 5 4, 3, 2, 2, 2, 1, 2 #### **Freeman Chain Code** #### Issues: - The resulting chain would be quite long - any small disturbances along the boundary due to noise or imperfect segmentation would cause changes in the code #### Solve: resample the boundary by selecting a larger grid spacing FIGURE 18.10 Chain code and Freeman code for a contour; (a) original contour; (b) subsampled version of the contour; (c) chain code representation; (d) Freeman code representation. #### **Chain Code** #### **OProblem** OA chain code sequence *depends on a starting point*. #### **O**Solution - OTreat a chain code as a circular sequence and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude after circular shift - 2 2 3 0 2 2 3 - The first difference of a chain code is counting the number of direction change (in counter clockwise) between 2 adjacent elements of the code ### **Shape number** - The freeman chain code can be converted into a Rotation-Invariant Equivalent, known as the first difference. - It is obtained by encoding the number of direction changes, expressed in multiples of 90° (according to a predefined convention, for example, counter clockwise), between two consecutive elements of the Freeman code. - The first difference of Smallest magnitude is obtained by treating the resulting array as a circular array and rotating it cyclically until the resulting numerical pattern results in the smallest possible number is known as the Shape number of the contour. ### **Shape Number** - ☐ The shape number is Rotation invariant and Insensitive to the starting point used to compute the original sequence. - Figure 18.11 shows an example of a contour, its chain code, first differences, and shape number. FIGURE 18.11 Chain code, first differences, and shape number. ### **Shape Number** - The shape number of a boundary is defined as the first difference of smallest magnitude - The order n of a shape number is defined as the number of digits in its representation ### Algorithm for making a shape number - Goal: To represent a given boundary by a shape number of order n - Step-1: Obtain the major axis of the shape and consider it as one of the coordinate axis - Step-2: Find the basic (smallest) rectangle that has sides parallel to major axis and just covers the shape - Step-3: From possible rectangles of order n, find one which best approximates rectangle of step-2 - Step-4: Orient the rectangle, so that its major axis coincides with that of the shape - Step-5: Obtain the first difference chain code of minimum magnitude after circular shift Chain code: 0 0 0 0 3 0 0 3 2 2 3 2 2 2 1 2 1 1 Difference: 3 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 Shape no.: 0 0 0 3 1 0 3 3 0 1 3 0 0 3 1 3 0 3 #### **Chain Code** #### OAdvantages - OPreserves the information of interest - OProvides good compression of boundary description - They are translation invariant #### **OProblems** - OLong chains of codes - No invariance to Rotation and Scale - Sensitive to Noise #### **O**Solution ORe-sample the image to a lower resolution before calculating the code ### Chain Codes #### FIGURE 11.2 (a) Digital boundary with resampling grid superimposed. (b) Result of resampling. (c) 4-directional - chain code. (d) 8-directional chain code. #### Example: - a chain code: 10103322 - The first difference = 3133030 - Treating a chain code as a circular sequence, we get the first difference = 33133030 ### **Polygonal** #### **Approximation** - O"Approximates the boundary by a set of connected line segments " - OPolygonal approximation provides a simple representation of the *Planar Object Boundary*. - OMathematical Definition - OLet the set of points of boundary be $X = \{x_1, x_2, \dots, x_n\}$ - ODivide this set into segment $\Lambda = \{\lambda_1, \lambda_2, ..., \lambda_n\}$ - OApproximate each segment by straight line by minimization of objective function $$J = \sum_{i} d(x_{i}, l_{j}), x_{i} \in \lambda_{j}$$ ### **Polygonal** ### **Approximation** - OApproximation leads to Loss of Information - OThe number of straight line segments used determines the accuracy of the approximation - For a closed boundary, approximation becomes exact when no. segments of the polygons is equal to the no. of points in the boundary - OHowever, the **goal** of approximation is - To capture the essence of the object shape with minimal loss - Thus, it saves the no. of bytes required for boundary representation ### The Split Method (Top-down) Olteratively decompose a boundary into a set of small segments and represent the segment by a straight line #### **OAlgorithm:** - OStep-1: Take the line segment connecting the end points of the boundary (if the boundary is closed, consider the line segment connecting the two farthest points). - OStep-2: Find the boundary point with maximum distance from the line segment - OStep-3: If the distance is above threshold, split the segment into two segments at that point (i.e., new vertex). - OStep-4: Repeat the same procedure for each of the two sub segments until the distance is below threshold a b c d #### FIGURE 11.4 - (a) Original boundary. - (b) Boundary divided into segments based on extreme points. (c) Joining of vertices. - (d) Resulting polygon. ## The Merge Method (Bottom-up) - Operate in a direction opposite to that of splitting method - **○**Algorithm: - OStep-1: Use the first two boundary points to define a line segment - Step-2: Add a new point if it does not deviate too far from the current line segment - OStep-3: Update the parameters of the line segment using least-squares - OStep-4: Start a newline segment when boundary points deviate too far from the line segment ### The Split & Merge - Algorithm OProblems of the split and merge methods - ODepending on threshold, vertices of polygon not necessarily correspond to points of inflections (such as corners) in the boundary - Combine split and merge method - OAfter recursive subdivision (split), allow adjacent segments to be replaced by a single segment (merge) ### **Signature** S - □ "Signature is a 1D representation of a boundary" - ☐ It is obtained by representing the boundary in a polar coordinate system then - □ Computing the **distance** *r* between each Pixel along the boundary and the Centroid of the region, and - □ The **angle 3** subtended between a straight line connecting the boundary pixel to the centroid and a horizontal reference (Figure 18.12, top). - □ The resulting plot of all computed values for $0 \le \vartheta \le 2\pi$ (Figure 18.12, bottom) provides a concise representation of the boundary that is translation invariant can be made rotation invariant (if the same starting point is always selected), but is *not scaling invariant*. - ☐ Figure 18.13 illustrates the effects of noise on the signature of a contour. ### Signature S FIGURE 18.12 Distance \times angle signatures for two different objects. Redrawn from [GW08]. FIGURE 18.13 Effect of noise on signatures for two different objects. Redrawn from ### Signature S Figure 9.3 An example of the use of the radial Fourier expansion technique to approximate the shape ### Signatur e - □ Signatures are invariant to location, but will depend on rotation and scaling. - Rotation invariance can be improved by selecting a unique starting point (e.g. based on major axis) - Scale invariance can be achieved by normalizing amplitude of signature (divide by variance) #### **Skeleton** #### S - Skeletons produce a one pixel wide graph that has the same basic shape of the region, like a stick figure of a human - Hence, they provide a compact and often highly intuitive representation - □ It can be used to analyse the *geometric structure of a region* - Also popular tool in object recognition #### **Medial Axis Transform** - (MAT) - Provides skeleton of an object. - ☐ The MAT of a region R with border B is defined as follows: - For each point p of R, we find its closest neighbour in B. - > If p has more then one such points, it is said to belong to the medial axis (skeleton) of R. a b c FIGURE 11.7 Medial axes (dashed) of three simple regions. #### **Medial Axis Transform** ## (MAT) Step-1: Iteratively compute $f^{k}(x, y)$ as follows until $f^{k}(x, y) = f^{k-1}(x, y)$: $$f^{k}(x,y) = f^{0}(x,y) + \min(f^{k-1}(p,q))$$ $$\forall (p,q)$$ such that $d((x,y),(p,q)) \leq 1$ Step-2: Medial axis is given by all points such that: $$f^{k}(x,y) \geq f^{k}(p,q)$$ $$\forall (p,q) \text{ such that } d((x,y),(p,q)) \leq 1$$ | 1 | 1 | 1 | 1 | 1 | 1 | |---|---|---|---|---|---| | 1 | 2 | 2 | 2 | 2 | 1 | | 1 | 2 | 3 | 3 | 2 | 1 | | 1 | 2 | 2 | 2 | 2 | 1 | | 1 | 1 | 1 | 1 | 1 | 1 | ## **Medial Axis Transform** # (MAT) - Medial Axis augmented by radius function & Transformation is invertible - The medial axis of a circle is its center. - the medial axis of an ellipse is its center (the midpoint of the line that connects the two foci of the ellipse), too. - Equilateral triangle: the segments connecting the middle of the bases and the center of the figure. - Arbitrary triangle: the segments connecting the middle of the sides with the center of gravity (where all medians cross). # **Medial Axis Transform (MAT)** - Application - Shape matching - Animation - Dimension reduction - Solid modelling - Smoothing or sharpening of shape - Motion planning - Mesh generation # **Other Boundary Descriptors** - There are several simple geometric measures that can be useful for describing a boundary - Length - the number of pixels along a boundary gives a rough approximation of its length - For a chain-coded curve with unit spacing - Length = the number of vertical and horizontal components + √2 * the number of diagonal components - Diameter (Major Axis) $$Diam(B) = \max_{i,j} [D(p_i, p_j)]$$ # **Other Boundary Descriptors** - Minor Axis - the line perpendicular to the major axis - Eccentricity - Ratio of major axis to minor axis # **Fourier Descriptors** - OThe idea behind Fourier descriptors is to *traverse the pixels belonging to a boundary*, starting from an arbitrary point, and record their coordinates. - OEach value in the resulting list of coordinate pairs $(x_0, y_0), (x_1, y_1), \dots, (x_{K-1}y_{K-1})$ is then interpreted as a complex number $x_k + jy_k$, for k = 0, $1, \dots, K-1$. - "The discrete Fourier transform (DFT) of this list of complex numbers is the Fourier descriptor of the boundary". - The inverse DFT restores the original boundary. - OFigure 18.14 shows a K-point digital boundary in the x-y plane and the first two coordinate pairs, (x_0, y_0) & (x_1, y_1) ### **Fourier** **Descriptors** - OFollowing is a way of using the Fourier transform to analyse the shape of a boundary. - 1. The x-y coordinates of the boundary are treated as the real and imaginary parts of a **complex number** - 2. Then the list of coordinates is Fourier transformed using the DFT - 3. The Fourier coefficients are called the Fourier descriptors. - 4. The basic shape of the region is determined by the first several coefficients, which represent lower frequencies - 5. Higher frequency terms provide information on the fine detail of the boundary # Fourier **Descriptors** #### chief advantages - ability to represent the essence of the corresponding boundary using very few coefficients. - ☐ This **property** is directly related to the ability of *the***Iow-order coefficients of the DFT* - □ That preserve the main aspects of the boundary, while the high-order coefficients encode the fine details. FIGURE 18.14 Fourier descriptor of a boundary. ### **Fourier** #### **FIGURE 11.14** Examples of reconstruction from Fourier descriptors. *P* is the number of Fourier coefficients used in the reconstruction of the boundary. Points on the boundary can be treated as a complex number s(k)=x(k)+jy(k) $$a(u) = \frac{1}{N} \sum_{k=0}^{N-1} s(k) \exp[-j2\pi u k/N]$$ #### **Fourier** e f g h FIGURE 11.19 (a) Boundary of a human chromosome (2868 points). (b)–(h) Boundaries reconstructed using 1434, 286, 144, 72, 36, 18, and 8 Fourier descriptors, respectively. These numbers are approximately 50%, 10%, 5%, 2.5%, 1.25%, 0.63%, and 0.28% of 2868, respectively. Images (b)–(h) are shown as negatives to make the boundaries easier to see. # Properties of Fourier Descriptors #### **OTranslation** - Adding some constant to values of all coordinates - > So, we only change the zero-frequency component. (Mean position only nothing about the shape) - So, except for the zero-frequency component, Fourier Descriptors are translation invariant. #### **○**Rotation - \triangleright Rotation in the complex plane by angle θ is multiplication by exp(j θ) - So, rotation about the origin of the coordinate system only multiplies the Fourier descriptors by exp(jθ) # **Properties of Fourier Descriptors** #### Scaling - It means multiplying x(k) and y(k) by some constant. - Hence, Fourier descriptors are scaled by the same constant (Again, we ignore the value of the zero-frequency component) #### **OStarting Point** - Changing starting point is equivalent to translation of the one-dimensional signal s(k) along the k dimension - Hence, translation in the spatial domain (in this case, k) is a phase-shift in the transform. - So, the magnitude part of a(u) is invariant to the start point, and the phase part shifts accordingly | Transformation | Boundary | Fourier Descriptor | | | |----------------|-------------------------------|----------------------------------------|--|--| | Identity | s(k) | a(u) | | | | Rotation | $s_r(k) = s(k)e^{j\theta}$ | $a_r(u) = a(u)e^{j\theta}$ | | | | Translation | $s_t(k) = s(k) + \Delta_{xy}$ | $a_t(u) = a(u) + \Delta_{xy}\delta(u)$ | | | | Scaling | $s_s(k) = \alpha s(k)$ | $a_s(u) = \alpha a(u)$ | | | | Starting point | $s_p(k) = s(k - k_0)$ | $a_p(u) = a(u)e^{-j2\pi k_0 u/K}$ | | | # **STATISTICAL FEATURES** #### STATISTICAL FEATURES - Histogram-based features are also referred to as amplitude features - Histograms provide a concise and useful representation of the intensity levels in a gray-scale image. - Thesimplest histogram-based descriptor is the meangray value of an image, representing its average intensity m and given by $$m = \sum_{j=0}^{L-1} r_j p(r_j)$$ where r_j is the jth gray level (out of a total of L possible values), whose probability of occurrence is $p(r_i)$. #### **STATISTICAL FEATURES - Mean** ☐ The mean gray value can also be computed directly from the pixel values from the original image f(x, y) of size $M \times N$ as follows: $$m = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y)$$ - □ The *mean is a very compact descriptor* (one floating-point value per image or object) that provides a measure of the overall brightness of the corresponding image or object. - It is also RST invariant. - On the negative side, it has very limited Expressiveness and Discriminative power. #### STATISTICAL FEATURES – Std. Dev. \Box The **standard deviation** (as descriptor) σ of an image is given by $$\sigma = \sqrt{\sum_{j=0}^{L-1} (r_j - m)^2 p(r_j)}$$ - where *m* is mean - □ The square of the standard deviation is the *variance*, which is also known as the *normalized second-order moment* of the image. - ☐ The standard deviation provides a concise representation of the overall contrast. - Similar to the mean, it is compact and RST invariant, but has limited expressiveness and discriminative power. #### STATISTICAL FEATURES – Skew ☐ The *skew* of a histogram is a measure of its asymmetry about the mean level. It is defined as $$skew = \frac{1}{\sigma^3} \sum_{j=0}^{L-1} (r_j - m)^3 p(r_j)$$ - \square where σ is the standard deviation. - □ The sign of the skew indicates whether the histogram's tail spreads to the right (positive skew) or to the left (negative skew). - The skew is also known as the normalized third-order moment of the image. #### STATISTICAL FEATURES – Skew If the image's mean value (m), standard deviation (σ), and mode (defined as the histogram's highest peak) are known, the skew can be calculated as follows: $$skew = \frac{m - mode}{\sigma}$$ # **STATISTICAL FEATURES – Energy** - ☐ The *energy/uniformity* descriptor provides another measure of *how the pixel* values are *distributed* along the gray-level range: - \Box images with a single constant value have maximum energy (i.e., energy = 1); - ☐ images with few gray levels will have higher energy than the ones with many gray levels. The energy descriptor can be calculated as $$energy = \sum_{j=0}^{L-1} [p(r_j)]^2$$ # STATISTICAL FEATURES – Entropy - Histograms also provide information about the complexity of the image, in the form of entropy descriptor. - The higher the entropy, the more complex the image - Entropy and energy tend to vary inversely with one another. The mathematical formulation for entropy is $$entropy = -\sum_{j=0}^{L-1} p(r_j) \log_2[p(r_j)]$$ Histogram-based features and their variants are usually employed as texture descriptors, as we shall see in next slide. #### **Statistical Moments** $$nth\ moment \\ m_n = \int_{-\infty}^{\infty} x^n p(x) dx$$ central moments $$M_n = \int_{-\infty}^{\infty} (x - \mu)^n p(x) \, \mathrm{d}x$$ pqth moment of a 2-D density function pox; yb $$m_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^p y^q p(x, y) \mathrm{d}x \mathrm{d}y$$ (p-q)th central moment of 2-D shape I(x,y) $$M_{pq} = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x - \mu_x)^p (y - \mu_y)^q I(x, y) \, \mathrm{d}x \, \mathrm{d}y$$ The (p-q)th normalized central moment is defined as $$\eta_{pq} = \frac{M_{pq}}{M_{00}^{\beta}}$$ where $\beta = \frac{p+q}{2} + 1$ and $p+q \ge 2$ #### **Hu Moments** $$\begin{split} &\Lambda_{1} = \eta_{20} + \eta_{02} \\ &\Lambda_{2} = (\eta_{20} - \eta_{02})^{2} + 4\eta_{11}^{2} \\ &\Lambda_{3} = (\eta_{30} - 3\eta_{12})^{2} + (3\eta_{21} - \eta_{03})^{2} \\ &\Lambda_{4} = (\eta_{30} + \eta_{12})^{2} + (\eta_{21} + \eta_{30})^{2} \\ &\Lambda_{5} = (\eta_{30} - 3\eta_{12})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{21} - \eta_{03})^{2}] + (3\eta_{21} - \eta_{03})(\eta_{03} + \eta_{21}) \\ &\times [3(\eta_{30} + \eta_{12})^{2} - (\eta_{03} + \eta_{21})^{2}] \\ &\Lambda_{6} = (\eta_{20} - \eta_{02})[(\eta_{12} + \eta_{30})^{2} - (\eta_{21} + \eta_{03})^{2}] + 4\eta_{11}(\eta_{21} + \eta_{03})(\eta_{12} + \eta_{30}) \\ &\Lambda_{7} = (3\eta_{21} - \eta_{03})(\eta_{30} + \eta_{12})[(\eta_{30} + \eta_{12})^{2} - 3(\eta_{03} + \eta_{21})^{2}] + (3\eta_{21} - \eta_{30})(\eta_{21} + \eta_{03}) \\ &\times [3(\eta_{30} + \eta_{12})^{2} - (\eta_{03} + \eta_{21})^{2}] \end{split}$$ ## **Hu Moments** Prof. Dr. SMM Ahsan, CSE, KUET ## **Hu Moments** TABLE 11.5 Moment invariants for the images in Fig. 11.37. | Moment
Invariant | Original
Image | Translated | Half Size | Mirrored | Rotated 45° | Rotated 90° | |---------------------|-------------------|------------|-----------|----------|-------------|-------------| | ϕ_1 | 2.8662 | 2.8662 | 2.8664 | 2.8662 | 2.8661 | 2.8662 | | ϕ_2 | 7.1265 | 7.1265 | 7.1257 | 7.1265 | 7.1266 | 7.1265 | | ϕ_3 | 10.4109 | 10.4109 | 10.4047 | 10.4109 | 10.4115 | 10.4109 | | ϕ_4 | 10.3742 | 10.3742 | 10.3719 | 10.3742 | 10.3742 | 10.3742 | | ϕ_5 | 21.3674 | 21.3674 | 21.3924 | 21.3674 | 21.3663 | 21.3674 | | ϕ_6 | 13.9417 | 13.9417 | 13.9383 | 13.9417 | 13.9417 | 13.9417 | | ϕ_7 | -20.7809 | -20.7809 | -20.7724 | 20.7809 | -20.7813 | -20.7809 | # **REGION DESCRIPTORS** #### **REGION DESCRIPTORS** compactness = $$\frac{p^2}{A}$$ circularity = $\frac{4\pi A}{p^2}$ perimeter p, of a region is the length of its boundary Area A, of a region is defined as the number of pixels in the region effective diameter $$d_e = 2\sqrt{\frac{A}{\pi}}$$ eccentricity = $$\frac{c}{a} = \frac{\sqrt{a^2 - b^2}}{a}$$: ### **REGION DESCRIPTORS** Table 9.1 Some common, single-parameter descriptors for approximate shape in 2-D | Definition | Circle | Square | Rectangle as $b/a \rightarrow \infty$ | |--|--|---|---| | $\frac{4\pi \times \text{Area}}{\text{Perimeter}^2}$ | 1 | $\pi/4$ | \rightarrow 0 | | $\frac{4 \times \text{Area}}{\pi \times \text{MaxDiameter}^2}$ | 1 | $2/\pi$ | \rightarrow 0 | | MaxDiameter
MinDiameter | 1 | 1 | $\rightarrow \infty$ | | Area
ConvexArea | 1 | 1 | \rightarrow 0 | | TotalArea Area Bounding Rectangle | $\pi/4$ | 1 | indeterminate | | $\frac{\sqrt{(4 \times \text{Area})/\pi}}{\text{MaxDiameter}}$ | 1 | $\sqrt{2/\pi}$ | $\rightarrow 0$ | | Convex Perimeter Perimeter | 1 | 1 | 1 | | | $4\pi \times \text{Area}$ $\overline{\text{Perimeter}^2}$ $4 \times \text{Area}$ $\pi \times \text{MaxDiameter}^2$ $\overline{\text{MaxDiameter}}$ $\overline{\text{MinDiameter}}$ $\overline{\text{MinDiameter}}$ $\overline{\text{ConvexArea}}$ $\overline{\text{TotalArea}}$ $\overline{\text{Area Bounding Rectangle}}$ $\sqrt{(4 \times \text{Area})/\pi}$ $\overline{\text{MaxDiameter}}$ $\overline{\text{Convex Perimeter}}$ | $ \frac{4\pi \times \text{Area}}{\text{Perimeter}^2} \qquad 1 $ $ \frac{4 \times \text{Area}}{\pi \times \text{MaxDiameter}^2} \qquad 1 $ $ \frac{\text{MaxDiameter}}{\text{MinDiameter}} \qquad 1 $ $ \frac{\text{Area}}{\text{ConvexArea}} \qquad 1 $ $ \frac{\text{TotalArea}}{\text{Area Bounding Rectangle}} \qquad \pi/4 $ $ \frac{\sqrt{(4 \times \text{Area})/\pi}}{\text{MaxDiameter}} \qquad 1 $ $ \frac{\text{Convex Perimeter}}{\text{Convex Perimeter}} \qquad 1 $ | $\frac{4\pi \times \text{Area}}{\text{Perimeter}^2} \qquad \qquad 1 \qquad \qquad \pi/4$ $\frac{4 \times \text{Area}}{\pi \times \text{MaxDiameter}^2} \qquad \qquad 1 \qquad \qquad 2/\pi$ $\frac{\text{MaxDiameter}}{\text{MinDiameter}} \qquad \qquad 1 \qquad \qquad 1$ $\frac{\text{Area}}{\text{ConvexArea}} \qquad \qquad 1 \qquad \qquad 1$ $\frac{\text{TotalArea}}{\text{Area Bounding Rectangle}} \qquad \qquad \pi/4 \qquad \qquad 1$ $\frac{\sqrt{(4 \times \text{Area})/\pi}}{\text{MaxDiameter}} \qquad \qquad 1 \qquad \qquad \sqrt{2/\pi}$ $\frac{\text{Convex Perimeter}}{\text{Convex Perimeter}} \qquad \qquad 1 \qquad \qquad 1$ | # **REGION DESCRIPTORS - Example** | Descriptor | | * | | | |--------------|---------|---------|---------|---------| | Compactness | 10.1701 | 42.2442 | 15.9836 | 13.2308 | | Circularity | 1.2356 | 0.2975 | 0.7862 | 0.9478 | | Eccentricity | 0.0411 | 0.0636 | 0 | 0.8117 | # **REGION DESCRIPTORS - Example** **Figure 9.2** From left to right: (a) original image; (b) binary image after thresholding and morphological processing; (c) the normalized area and the form factor of each object in (b) are plotted in a 2-D feature space # **Texture Features/Descriptors** #### **Texture Features** - □ Texture can be a powerful descriptor of an image (or one of its regions). - Image processing techniques usually associate the notion of texture with image (or region) properties such as *Smoothness* (or its opposite, *roughness*), *Coarseness*, and *Regularity*. - There are three main approaches to describe texture properties in image processing: Structural, Spectral, and Statistical. - Most application focus on the statistical approaches, due to their popularity, usefulness and ease of computing. #### **Texture Features** •FIGURE 18.16 Example of images with smooth (a), coarse (b), and regular (c) texture. Images from the Brodatz textures data set. • FIGURE 18.17 Histograms of images in Figure 18.16. #### **Texture Features** - □ One of the simplest set of statistical features for texture description consists of the following histogram-based descriptors of the image (or region): **mean**, **variance** (or its square root, the standard deviation), **skew**, **energy** (used as a measure of *uniformity*), and **entropy**, all of which were introduced in Section 18.5. - \square The variance is sometimes used as a normalized descriptor of roughness (R), defined as $$R = 1 - \frac{1}{1 + \sigma^2}$$ - \square Where, σ^2 is the normalized (to a [0, 1] interval) variance. - \square R = 0 for areas of constant intensity, that is, smooth texture. ### **Texture Features** #### Highest uniformity has lowest entropy | Texture | Mean | Standard
deviation | Roughness R | Skew | Uniformity | Entropy | | |---------|----------|-----------------------|-------------|---------|------------|---------|--| | Smooth | 147.1459 | 47.9172 | 0.0341 | -0.4999 | 0.0190 | 5.9223 | | | Coarse | 138.8249 | 81.1479 | 0.0920 | -1.9095 | 0.0306 | 5.8405 | | | Regular | 79.9275 | 89.7844 | 0.1103 | 10.0278 | 0.1100 | 4.1181 | | #### **Texture Features** a b c #### **FIGURE 11.29** The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael W. Davidson, Florida State University.) Statistical texture measures for the subimages in Fig. 11.29. | Texture | Mean | Standard
deviation | R (normalized) | 3rd moment | Uniformity | Entropy | |---------|--------|-----------------------|----------------|------------|------------|---------| | Smooth | 82.64 | 11.79 | 0.002 | -0.105 | 0.026 | 5.434 | | Coarse | 143.56 | 74.63 | 0.079 | -0.151 | 0.005 | 7.783 | | Regular | 99.72 | 33.73 | 0.017 | 0.750 | 0.013 | 6.674 | #### **Texture Features** - ☐ Histogram-based texture descriptors are limited by the fact that the histogram does not carry any information about the spatial relationships among pixels. - □ One way to circumvent this limitation consists in using an alternative representation for the pixel values that encodes their relative position with respect to one another. - □ One such representation is the *gray-level co-occurrence matrix G, defined as a matrix* whose element g(i, j) represents the number of times that pixel pairs with intensities zi and zj occur in image f(x, y) in the position specified by an operator d. - The vector d is known as displacement vector: # **Gray level Co-occurrence Matrix** Displacement, d = [1, 0] # **Gray level Co-occurrence Matrix** The gray-level co-occurrence matrix can be normalized as follows: $$N_g(i,j) = \frac{g(i,j)}{\sum_i \sum_j g(i,j)}$$ where Ng(i, j) is the normalized gray-level co-occurrence matrix. - □ Since all values of Ng(i, j) lie between 0 and 1, they can be thought of as the probability that a pair of points satisfying **d will have values (zi, zj)**. - Co-occurrence matrices can be used to represent the texture properties of an image. - Instead of using the entire matrix, more compact descriptors are preferred. - □ These are the most popular texture-based features that can be computed from a normalized gray-level co-occurrence matrix Ng(i, j): # **GLCM** - descriptors Maximum probability = $$\max_{i,j} N_{g}(i, j)$$ Energy = $\sum_{i} \sum_{j} N_{g}^{2}(i, j)$ Entropy = $-\sum_{i} \sum_{j} N_{g}(i, j) \log_{2} N_{g}(i, j)$ Contrast = $\sum_{i} \sum_{j} (i - j)^{2} N_{g}(i, j)$ Homogeneity = $\sum_{i} \sum_{j} \frac{N_{g}(i, j)}{1 + |i - j|}$ Correlation = $\frac{\sum_{i} \sum_{j} (i - \mu_{i})(j - \mu_{j}) N_{g}(i, j)}{\sigma_{i} \sigma_{i}}$ where μ_i , μ_j are the means and σ_i , σ_j are the standard deviations of the row and column sums $N_g(i)$ and $N_g(j)$, defined as $$N_{g}(i) = \sum_{i} N_{g}(i, j)$$ (18.35) $$N_{\rm g}(j) = \sum_{i} N_{\rm g}(i, j)$$ (18.36) # **GLCM** - descriptors | Descriptor | Explanation | |---------------------------------|--| | Maximum
probability | Measures the strongest response of G .
The range of values is [0, 1]. | | Correlation | A measure of how correlated a pixel is
to its neighbor over the entire image. The
range of values is 1 to -1 corresponding
to perfect positive and perfect negative
correlations. This measure is not defined
if either standard deviation is zero. | | Contrast | A measure of intensity contrast between a pixel and its neighbor over the entire image. The range of values is 0 (when G is constant) to $(K-1)^2$. | | Uniformity (also called Energy) | A measure of uniformity in the range [0, 1]. Uniformity is 1 for a constant image. | | Homogeneity | Measures the spatial closeness to the diagonal of the distribution of elements in G . The range of values is [0, 1], with the maximum being achieved when G is a diagonal matrix. | | Entropy | Measures the randomness of the elements of G . The entropy is 0 when all p_{ij} 's are 0, and is maximum when the p_{ij} 's are uniformly distributed. The maximum value is thus $2 \log_2 K$. | # **GLCM** - Example L = 256 and the position operator, d= "one pixel immediately to the right. # **GLCM** - Example L = 256 and the position operator, d= "one pixel immediately to the right. **GLCM** Descriptors evaluated using the co-occurrence matrices displayed as images in Fig. 11.32. | Normalized
Co-occurrence
Matrix | Maximum
Probability | Correlation | Contrast | Uniformity | Homogeneity | Entropy | |---------------------------------------|------------------------|-------------|----------|------------|-------------|---------| | G_1/n_1 | 0.00006 | -0.0005 | 10838 | 0.00002 | 0.0366 | 15.75 | | G_2/n_2 | 0.01500 | 0.9650 | 00570 | 0.01230 | 0.0824 | 06.43 | | G_3/n_3 | 0.06860 | 0.8798 | 01356 | 0.00480 | 0.2048 | 13.58 | # **Example** • For the given binary image compute the descriptor values and fill them in the given table. #### **Table for feature** | Object | Area | Centroid | Orientation | Euler | Eccentricity | Aspect | Perimeter | Thiness | |------------------|------|------------|-------------|--------|--------------|--------|-----------|---------| | | | (row, col) | (degrees) | number | | ratio | | ratio | | Top left square | | | | | | | | | | Big circle | | | | | | | | | | Small circle | | | | | | | | | | Top right square | | | | | | | | | **Question 2** Do the results obtained for the extracted features correspond to your expectations? Explain. **Question 3** Which of the extracted features have the best discriminative power to help tell squares from circles? Explain. **Question 4** Which of the extracted features have the worst discriminative power to help tell squares from circles? Explain. **Question 5** Which of the extracted features are ST invariant, that is, robust to changes in size and translation? Explain. Question 6 If you had to use only one feature to distinguish squares from circles, in a ST-invariant way, which feature would you use? Why? Prof. Dr. SMM Ahsan, CSE, KUET # **Other Features/Descriptors** - Harris Corner detector - SIFT Scale Invariant Feature Transform - SURF Speeded Up Robust Feature - ORB Oriented FAST and Rotated BRIEF # **Feature Matching** # Local features: main components #### 1) Detection: Find a set of distinctive key points. #### 1) Description: Extract feature descriptor around each interest point as vector. $$\mathbf{x}_1 = [x_1^{(1)}, \mathbb{X}, x_d^{(1)}] \leftarrow$$ ### 1) Matching: Compute distance between feature vectors to find correspondence. Distance: 0.34, 0.30, 0.40 Distance: 0.61, 1.22 #### Think-Pair-Share - Design a feature point matching scheme. - \square Two images, I_1 and I_2 - □ Two sets X_1 and X_2 of feature points - Each feature point x₁ has a descriptor $$\mathbf{x}_1 = [x_1^{(1)}, \mathbb{X}, x_d^{(1)}]$$ Distance, bijective/injective/surjective, noise, confidence, computational complexity, generality... # **Euclidean distance vs. Cosine Similarity** Euclidean distance: $$egin{align} \mathrm{d}(\mathbf{p},\mathbf{q}) &= \mathrm{d}(\mathbf{q},\mathbf{p}) = \sqrt{(q_1-p_1)^2 + (q_2-p_2)^2 + \dots + (q_n-p_n)^2} \ &= \sqrt{\sum_{i=1}^n (q_i-p_i)^2}. \ &\|\mathbf{q}-\mathbf{p}\| = \sqrt{(\mathbf{q}-\mathbf{p})\cdot(\mathbf{q}-\mathbf{p})}. \end{gathered}$$ Cosine similarity: $$\mathbf{a} \cdot \mathbf{b} = \left\| \mathbf{a} \right\|_2 \left\| \mathbf{b} \right\|_2 \cos \theta$$ $$ext{similarity} = \cos(heta) = rac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\|_2 \|\mathbf{B}\|_2}$$ #### **Other Distance Measures** #### Minkowski-form distance: $$d_{L_r}(H, K) = \left(\sum_{\mathbf{i}} |h_{\mathbf{i}} - k_{\mathbf{i}}|^r\right)^{1/r}$$ Histogram intersection: $$d_{\cap}(H, K) = 1 - \frac{\sum_{\mathbf{i}} \min(h_{\mathbf{i}}, k_{\mathbf{i}})}{\sum_{\mathbf{i}} k_{\mathbf{i}}}.$$ Kullback-Leibler divergence and Jeffrey divergence: The Kullback-Leibler (K-L) divergence [14] is defined as: $$d_{KL}(H, K) = \sum_{\mathbf{i}} h_{\mathbf{i}} \log \frac{h_{\mathbf{i}}}{k_{\mathbf{i}}}.$$ χ^2 statistics: $$d_{\chi^2}(H,K) = \sum_{\mathbf{i}} \frac{(h_{\mathbf{i}} - m_{\mathbf{i}})^2}{m_{\mathbf{i}}}, \qquad m_{\mathbf{i}} = \frac{h_{\mathbf{i}} + k_{\mathbf{i}}}{2}$$ ### **Other Distance Measures** Quadratic-form distance: this distance was suggested for color based retrieval in [17]: $$d_A(H, K) = \sqrt{(\mathbf{h} - \mathbf{k})^T \mathbf{A} (\mathbf{h} - \mathbf{k})}$$, Match distance: $$d_M(H,K) = \sum_i |\hat{h}_i - \hat{k}_i|,$$ Kolmogorov-Smirnov distance: $$d_{KS}(H,K) = \max_{i}(|\hat{h}_i - \hat{k}_i|).$$ $$EMD(P,Q) = \frac{\sum_{i=1}^{m} \sum_{j=1}^{n} d_{ij} f_{ij}}{\sum_{i=1}^{m} \sum_{j=1}^{n} f_{ij}},$$ # **Feature Matching** #### Criteria 1: - Compute distance in feature space, e.g., Euclidean distance between (eg. 128-dim SIFT) descriptors - Match point to lowest distance (nearest neighbor) #### Problems: Does everything have a match? # **Feature Matching** #### Criteria 2: - Compute distance in feature space, e.g., Euclidean distance between (eg. 128-dim SIFT) descriptors - Match point to lowest distance (nearest neighbor) - Ignore anything higher than threshold (no match!) #### Problems: - Threshold is hard to pick - Non-distinctive features could have lots of close matches, only one of which is correct ## **Nearest Neighbor Distance Ratio** Compare distance of closest (NN1) and second-closest (NN2) feature vector neighbor. - □ If NN1 ≈ NN2, ratio $\frac{NN1}{NN2}$ will be ≈ 1 -> matches too close. - As NN1 << NN2, ratio $\frac{NN1}{NN2}$ tends to 0. - Sorting by this ratio puts matches in order of confidence. - Threshold ratio but how to choose? ### **Nearest Neighbor Distance Ratio** - Lowe computed a probability distribution functions of ratios - 40,000 keypoints with hand-labeled ground truth Ratio threshold depends on your application's view on the trade-off between the number of false positives and true positives! # **Efficient compute cost** Naïve looping: Expensive - Operate on matrices of descriptors - E.g., for row vectors, ``` features_image1 * features_image2^T ``` produces matrix of dot product results for all pairs of features (cosine similarity). What can we do for Euclidean distance? ### Ref. - Fundamentals of Digital Image Processing - Chris Solomon, Toby Breckon - https://www.slideshare.net/Jaddu44/image-feature-extraction