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2.1 Sets(1/8)

• Definition 1: A  set is an unordered 
collection of objects

• Definition 2: Objects in a set are called
elements, or members of the set.
– a  A,  a  A

– V  = {a, e, i, o, u}

– O  = {1, 3, 5, 7, 9}
or O  = {x|x is an odd positive integer less 
than 10}
or O  = {xZ+|x is odd and x<10}



2.1 Sets(2/8)

– N={0, 1, 2, 3, …},  natural numbers

– Z={…,-2, -1, 0, 1, 2, …},  integers

– Z+={1, 2, 3, …},  positive integers

– Q={p/q|pZ, qZ, and q0}, rational numbers

– Q+={xR|x=p/q, for positive integers p and q}

– R, real numbers



2.1 Sets(3/8)

• Definition 3: Two sets are equal if and 
only if they have the same elements. 
A=B iff x(x  A   x  B)

• Venn diagram

– Universal set U

– Empty set (null set)  (or {})



FIGURE 1 (2.1)

FIGURE 1 Venn Diagram for the Set of Vowels.

P. 114



2.1 Sets(5/8)

• Definition 4: The set A  is a subset of B if 
and only if every element of A  is also an 
element of B.
A   B iff x(x  A  → x  B)

• Theorem 1: For every set S,
(1)   S and (2) S  S.

• Proper subset: A   B
x(x  A  → x  B)  x(x  B  x  A)



2.1 Sets(6/8)

• If AB and BA, then A=B

• Sets may have other sets as members

– A={, {a}, {b}, {a,b}}
B={x|x is a subset of the set {a,b}}

– A=B



FIGURE 2 (2.1)

FIGURE 2 Venn Diagram Showing that A Is a Subset of B.



2.1 Sets(8/8)

• Definition 5: If there are exactly n distinct 
members in the set S (n is a nonnegative 
integer), we say that S is a finite set and 
that n is the cardinality of S.
| S | =  n

– | |=0

• Definition 6: A  set is infinite if it’s not 
finite.

– Z+



The Power Set

• Definition 7: The power set of S is the set 
of all subset of the set S. P(S)

– P({0,1,2})

– P()

– P({})

• If a set has n elements, then its subset has
2n elements.



Cartesian Products

• Definition 8: Ordered n-tuple (a1, a2, … ,  an) is the 
ordered collection that has ai as its ith element 
for i=1, 2, … ,  n.

• Definition 9: Cartesian product of A  and B, 
denoted by A   B, is the set of all ordered pairs (a, 
b), where a  A  and b  B.
A   B = {(a, b)| a  A   b  B}

– E.g. A  = {1, 2}, B = {a, b, c}

– A   B and B  A  are not equal, unless A= or B= or
A=B



• Definition 10: Cartesian product of A1,
A2, … ,  An, denoted by A1 A2  …  An, is 
the set of all ordered n-tuples (a1, a2, … ,  an), 
where ai  A i  for i=1,2,…,n.
A1 A2  …  An  = {(a1, a2, … ,  an)| ai  A i  for
i=1,2,…,n}



• Using set notation with quantifiers

– xS (P(x)): x (xS → P(x))

– xS (P(x)): x (xS  P(x))

– ∃x : x^2 = 4 is true, since 2 is an x for which

x^ 2 = 4. On the other hand, ∀x : x^2 = 4 is 
clearly false; not all numbers, when squared, are 
equal to 4.



• Truth sets of quantifiers

Given a predicate P, and a domain D, we define the truth

set of P to be the set of elements x in D  for which P (x) is true.

Then the truth set of P: {x  D  |  P(x)}

• For Example:
What are the truth sets of the predicates P (x), where the domain 
is the set of integers and P (x) is “ | x |  = 1”.

Solution: The truth set of P, {x ∈ Z  |  | x |  = 1}, is the set of integers for 
which | x |  = 1. Because | x |  = 1 when x = 1 or x = −1, and for no other 
integers x, we see that the truth set of P is the set {−1, 1}.
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2.2 Set Operations

• Definition 1: The union of the sets A  and 
B, denoted by AB, is the set containing 
those elements that are either in A  or in B, 
or in both.
– AB={x|xA  xB}

• Definition 2: The intersection of the sets A  
and B, denoted by AB, is the set 
containing those elements in both A  and B.
– A   B={x|xA  xB}



Figure 1 (2.2)



FIGURE 1 Venn Diagram Representing the Union of A and B.



FIGURE 2 (2.2)



FIGURE 2 Venn Diagram Representing the Intersection of A and B.



• Definition 3: Two sets are disjoint if their 
intersection is the empty set.

• | AB | = | A | + | B | - |  A   B |

– Principle of inclusion-exclusion



• Definition 4: The difference of the sets A  and B, 
denoted by A-B, is the set containing those 
elements that are in A  but not in B.

– Complement of B with respect to A

– A-B={x|xA  xB}

• Definition 5: The complement of the set A ,  
denoted by Ā,  is the complement of A  with 
resepect to U.

– Ā  = {x|xA}



FIGURE 3 (2.2)

FIGURE 3 Venn Diagram for the Difference of A and B.



FIGURE 4 (2.2)

FIGURE 4 Venn Diagram for the Complement of the Set A.



TABLE 1 (2.2)



Set Identities

• To prove set identities

– Show that each is a subset of the other

– Using membership tables

– Using those that we have already proved



TABLE 2 (2.2)



Generalized Unions and Intersections

• Definition 6: The union of a collection of sets is 
the set containing those elements that are 
members of at least one set in the collection.
– A1 A2  …   An =

• Definition 7: The intersection of a collection of 
sets is the set containing those elements that are 
members of all the sets in the collection.
– A1 A2  …   An =

• Computer Representation of Sets
– Using bit strings

n

∪  A i

i  = 1

n

∩  A i

i  = 1



FIGURE 5 (2.2)

FIGURE 5 The Union and Intersection of A, B, and C.
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2.3 Functions

• Definition 1: A  function f from A  to B is 
an assignment of exactly one element of B 
to each element of A .  f: A→B

• Definition 2: f: A→B.
– A: domain of f, B: codomain of f.

– f(a)=b, a: preimage of b, b: image of a.

– Range of f: the set of all images of elements of
A

– f: maps A  to B



FIGURE 1
x 2x+1

FIGURE 1.1: An example of function with it’s components.
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FIGURE 2
x 2x+1

FIGURE 1.2: An example of not being function
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FIGURE 3

FIGURE 1.3: An example of not being function
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FIGURE 2 (2.3)

FIGURE 2 The Function f Maps A to B.



• Definition 3: Let f1 and f2 be functions 
from A  to R. f1+f2 and f1f2 are also 
functions from A  to R:

– (f1+f2)(x) = f1(x)+f2(x)

– (f1f2)(x)=f1(x)f2(x)

• Definition 4: f: A→B, S is a subset of A. 
The image of S under the function f  is: 
f(S)={t|sS(t=f(s))}



One-to-One and Onto Functions

• Definition 5: A  function f is one-to-one or 
injective, iff f(a)=f(b) implies that a=b for all a 
and b in the domain of f.
– ab( f(a)=f(b) → a=b ) or
ab( a  b → f(a)  f(b) )

• Definition 6: A  function f is increasing if 
f(x)≤f(y), and strictly increasing if f(x)<f(y) 
whenever x<y. f is called decreasing if f(x)≥f(y), 
and strictly decreasing if f(x)>f(y) whenever x<y.



FIGURE 3 (2.3)

FIGURE 3 A One-to-One Function.



One-to-One and Onto Functions

• Definition 7: A  function f is onto or 
surjective, iff for every element bB there 
is an element aA with f(a)=b.
– yx( f(x)=y ) or
ab( a  b → f(a)  f(b) )

– When co-domain = range

• Definition 8: A  function f is a one-to-one 
correspondence or a bijection if it is both 
one-to-one and onto.
– Ex: identity function ιA(x)=x



FIGURE 4 (2.3)

FIGURE 4 An Onto Function.



FIGURE 5 (2.3)

FIGURE 5 Examples of Different Types of Correspondences.



Inverse Functions and Compositions of 
Functions

If a function is one-to-one correspondence then it’s inverse is possible

• Definition 9: Let f be a one-to-one 
correspondence from A  to B. The inverse 
function of f is the function that assigns to 
an element b in B the unique element a in 
A  such that f(a)=b.

– f-1(b)=a when f(a)=b

Prove It



FIGURE 6 (2.3)

FIGURE 6 The Function f －1 Is the Inverse of Function f.



• Definition 10: Let g be a function from A  
to B, and f be a function from B to C.  The 
composition of functions f and g, denoted 
by f○g, is defined by:

– f○g(a) = f(g(a))

– f○g and g○f are not equal --- Prove it



FIGURE 7 (2.3)

FIGURE 7 The Composition of the Functions f and g.





Graphs of Functions

• Definition 11: The graph of function f is 

the set of ordered pairs {(a,b)|aA and 
f(a)=b}



FIGURE 8 (2.3)

FIGURE 8 The Graph of f(n) = 2n + 1 from Z to Z.



FIGURE 9 (2.3)

FIGURE 9 The Graph of f(x) = x2 from Z to Z.



Floor and Ceil Functions

• Definition 12: The floor function assigns 
to x the largest integer that is less than or 
equal to x (x or [x])..

• Definition 13: The ceiling function assigns 
to x the smallest integer that is greater 
than or equal to x (x)



FIGURE 10 (2.3)

FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.



TABLE 1 (2.3)



Proof: 4(a)
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2.4 Sequences and Summations

• Definition 1: A  sequence is a function 
from a subset of the set of integers to a set
S. We use an to denote the image of the 
integer n (a term of the sequence)

– The sequence {an}

• Ex: an=1/n



• Definition 2: A  geometric progression is a 
sequence of the form

a, ar, ar2, … ,  arn, …
where the initial term a and the common ratio r are 
real numbers

• Definition 3: A  arithmetic progression is a 
sequence of the form

a, a+d, a+2d, … ,  a+nd, …

where the initial term a and the common difference 
d are real numbers



• Ex. 1, 3, 5, 7, 9, …

• Ex. 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, …

• Ex. 1, 7, 25, 79, 241, 727, 2185, 6559, 19681,
59047, …



TABLE 1 (2.4)



Summing a Sequence

• Specific sum

1 + 2 + 3 + …..  + n-1 + n

• General summation of a sequence of terms:

a1 + a2 + … …  an

ak terms 

where k = 1 , 2 , …  n



Summing a Sequence

• Each element ak of a sum is called a term.

• The  terms  are  often  specified   implicitly 

as   formulas   that   follow   a   readily 

perceived pattern.

• In  such  cases  we  must  sometimes  write 

them  in  an  expanded  form  so  that  the 

meaning is clear.



Summing a Sequence

1 + 2 + ……… .

1 + 2 + …..  + 2n-1

1 + 2 + 4 + …… .  + 2n-1

20 + 21 + 22 + …… .  + 2n-1

The three-dots notation has many uses, but it 
can be ambiguous and a bit long-winded



Delimited Form of Sum

• Three-dots notation is vague and wordy

which is also called Sigma-notation because it

uses the Greek letter



Delimited Form of Sum

• Parts of notation

– Summand

– Index variable

– Lower limit

– Upper limit



Delimited Form of Sum

• Sigma notation inline



Delimited Form of Sum

Sums the terms ak where index k is an integer 

from lower limit 1 to upper limit n

or

sum over k from 1 to n



Generalized Sigma-Notation

• Specify a condition that the index variable 

must satisfy

• We  simply  write  one  or  more  conditions 

under the   to specify the set of indices over 

which summation should take place.



Generalized Sigma-Notation

• The general form allows us to take sums 

over  index  sets  that  aren’t  restricted  to 

consecutive integers.



Generalized Sigma-Notation

• Express the sum of the squares of all odd 

positive integers below 100

• The delimited equivalent of this sum



Generalized Sigma-Notation

• The sum of reciprocals of all prime 

numbers between 1 and N

• The delimited equivalent of this sum

(N) = Number of primes given



Advantage of Generalized Sigma- 
Notation

• We can manipulate it more easily than the 

delimited form



Advantage of Generalized Sigma- 
Notation

• Change the index variable k to k + 1

• Generalized Sigma-notation

• Delimited form



Advantage of Delimited Form

ly
• It’s nice and tidy, and we can write it 

quick

=

• Needs less symbol than generalized sigma 
notation.



Delimited Form Vs. Generalized 
Sigma-Notation

• Delimited Form

– Used in presenting or stating a problem

• Generalized Sigma-Notation

– Used when index variable needs to be 

transformed.



Summations

• Summation notation:

– am+am+1+…+an

– j: index of summation

– m: lower limit

– n: upper limit

n

 a j 
j =m


n

j =m j
a  a j1 jn



• Theorem 1 (geometric series): If a and r are 
real numbers and r≠0, then

– Prove it yourself

if r  1 

if r =1(n +1)a
r −1


 arn+1 − an

j =0

ar j  = 





TABLE 2 (2.4)



Cardinality

• Definition 4: The sets A  and B have the same 
cardinality iff there is a one-to-one 
correspondence from A  to B.

• Definition 5: A  set that is either finite or has the 
same cardinality as the set of positive integers is 
called countable. A  set that is not countable is 
called uncountable. When an infinite set S is 
countable, |S|=0א  (“aleph null”)

– Ex: the set of odd positive integers is countable



FIGURE 1 (2.4)

FIGURE 1 A One-to-One Correspondence Between Z+ and 

the Set of Odd Positive Integers, f(n) = 2n - 1.



FIGURE 2 (2.4)

歐亞書局

FIGURE 2 The Positive Rational Numbers Are Countable.
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Practice Problem

❑ Let S ={−1,0,2,4,7}. Find f(S)if 
f(x)= x/5 .

Apply f(x)=x/5to each x∈S:

f(−1)=−1/5=−0.2

f(0)=0/5=0

f(2)=2/5=0.4

f(4)=4/5=0.8

f(7)=7/5=1.4



If x is a real number and m is an integer, then prove that 

⌈x+m⌉=⌈x⌉+m.

Express x in terms of its ceiling:

Let ⌈x⌉=n, where n is the smallest integer greater than or equal 

to x.

By definition of the ceiling function:

n−1< x ≤ n.

Add the integer mm to all parts of the inequality:

(n−1)+m<x+m≤n+m.

Simplifying:

(n+m)−1<x+m≤n+m.

Apply the ceiling function to x+m:

The inequality (n+m)−1<x+m≤n+m shows that x+m lies in the 

interval between (n+m)−1 and n+m.

By definition, the ceiling of x+m is the smallest integer greater 

than or equal to x+m, which is n+m:

⌈x+m⌉=n+m.

Substitute ⌈x⌉=n:

⌈x+m⌉=⌈x⌉+m.
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