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2.1 Sets(1/8)

e Definition1: A is an unordered
collection of objects
e Definition 2: Objects in a set are called
, Or of the set.
—acelA,ag A
-V ={a¢1,0,u}
-0={1,3,5,79)
or O = {x|x is an odd positive integer less

than 10}
or O = {xeZ*|x is odd and x<10}




2.1 Sets(2/8)

- N={0, 1, 2, 3, ...}, natural numbers
-/Z={..,-2,-1,0,1, 2, ...}, integers

- Z+={1, 2, 3, ...}, positive integers

- QO={p/q|peZ, qeZ, and g#0}, rational numbers
- Q+*={xeR|x=p/q, for positive integers p and g}

- R, real numbers



2.1 Sets(3/8)

e Definition 3: Two sets are if and
only if they have the same elements.
A=Bitf Vx(x € A <> x € B)

e Venn diagram

— Universal set U
- Empty set (null set) & (or {})
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U

FIGURE 1 Venn Diagram for the Set of Vowels.

P.114



2.1 Sets(5/8)

e Definition 4: The set A is a of B if
and only if every element of A is also an
element of B.

AcCBiff Vx(xe A > x € B)

e Theorem 1: For every set S,
(1) Y < Sand (2)S cS.

e Proper subset: A — B
Vx(x€e A >xeB)andx(xe BAx ¢ A)




2.1 Sets(6/8)

e [f AcB and BcA, then A=B
e Sets may have other sets as members

- A={(J, {a}, {b}, {a,b}}
B={x|x is a subset of the set {a,b}}
- A=B
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U

FIGURE 2 Venn Diagram Showing that 4 Is a Subset of B.




2.1 Sets(8/8)

e Definition 5: If there are exactly n distinct
members in the set S (n is a nonnegative
integer), we say that S is a finite set and
that n is the of S.

[S[=n
~ | @|=0

e Definition 6: A set is if it’s not
finite.

-7




The Power Set

e Definition 7: The of S is the set
of all subset of the set S. P(S)
- P({0,1,2})
- P(©)
- P({9})

e [f a set has n elements, then its subset has
2" elements.




Cartesian Products

e Definition 8: (a, a, ..., a,)is the
ordered collection that has a; as its ith element
fori=1, 2, ..., n.

e Definition 9: of A and B,
denoted by A x B, is the set of all ordered pairs (q,
b), wherea € A and b € B.

AxB={(ab)laecA Abe B)
- Eg.A={1,2),B={a, b, c}

- A x Band B x A are not equal, unless A= or B=J or
A=B




e Definition 10: Cartesian product of A,
A, .., A, denoted by A;x A, x..x A4,,1is
the set of all ordered n-tuples (a,, a,, ..., a,),
where a; € A, for i=1,2,...,n.

AxA,x..x A, ={(a,a, .., a,)| a; € A; for
i=1,2,...,n)}



e Using set notation with quantifiers
- VxeS$ (P(x)): Vx (xeS — P(x))
- dxeS (P(x)): dx (xS A P(x))
- 3x : x*2 = 4 is true, since 2 is an x for which

x”" 2 =4.0n the other hand, Vx:x"2 =4 is
clearly false; not all numbers, when squared, are
equal to 4.



e Truth sets of quantifiers

Given a predicate P, and a domain D, we define the truth
set of P to be the set of elements x in D for which P (x) is true.

Then the truth set of P: {x € D | P(x)}

e For Example:
What are the truth sets of the predicates P (x), where the domain
is the set of integers and P (x) is “| x| = 1".

: The truth set of P, {x € Z | | x| = 1}, is the set of integers for
which | x| = 1. Because | x| = 1 when x = 1 or x = -1, and for no other
integers x, we see that the truth set of P is the set {-1, 1}.
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2.2 Set Operations

e Definition 1: The of the sets A and

B, denoted by AUB, is the set containing
those elements that are either in 4 or in B,
or in both.

- AUB={x[x€A v xeB}
e Definition 2: The of the sets 4

and B, denoted by AnB, is the set
containing those elements in both 4 and B.

- A N B={x[x€eA N xeB)}
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Figure 1 (2.2)

U

A U B 1s shaded.
FIGURE 1 Venn Diagram Representing the Union of 4 and B.
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U

A ~ B 1s shaded.

FIGURE 2 Venn Diagram Representing the Intersection of 4 and B.



e Definition 3: Two sets are if their
intersection is the empty set.

e |AUB|=|A|+|B|-| A "B

- Principle of inclusion-exclusion




e Definition 4: The of the sets A and B,
denoted by A-B, is the set containing those
elements that are in A but not in B.

— Complement of B with respect to A
- A-B={x[x€A A x&B}

e Definition 5: The of the set 4,
denoted by A, is the complement of A with
resepect to U.

- A = {x|xgA)
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U

A — B 1s shaded.

FIGURE 3 Venn Diagram for the Difference of 4 and B.
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U

A is shaded.

FIGURE 4 Venn Diagram for the Complement of the Set A4.
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TABLE 1 Set Identities.

Identity Name

Av@=A Identity laws
AnNnU= A

AvU=U Domination laws
ANnD =0

AUA= A Idempotent laws
ANnA= A

(A?)- = A Complementation law
AUuB= BUA Commutative laws
ANnB= BNA

Au(BUC)= (AUB)LC
An(BNC)= (AnB)NC

Associative laws

AN(BuC)= (AnB)U(ANC)
Au(BNC)= (AUB)N(AVLC(C)

Distributive laws

De Morgan’s laws

Absorption laws

Complement laws




Set Identities

e To prove set identities
— Show that each is a subset of the other
— Using membership tables
— Using those that we have already proved



TABLE 2 (2.2)
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TABLE 2 A Membership Table for the Distributive Property.

A B C BucC An(Buw(C) ANB (ANnB)U(ANC)

I
I
1
0
1
I
1

OO = = -
S co0coC O — —
b
oo o = =)
O
T — T — T — B — T

QOO O

I
1
0
0
1
I
0
0

0




Generalized Unions and Intersections

e Definition 6: The of a collection of sets is
the set containing those elements that are
members of at least one set in the collection.

- A VAU ... UA, =

e Definition 7: The of a collection of
sets is the set containing those elements that are
members of all the sets in the collection.

- ANA; .. NA, = [AEEER
e Computer Representation of Sets
— Using bit strings




CICTIDL £ (M M)
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U )

o B
B B

(a) AU B U C is shaded. (b) AN BN C is shaded.

FIGURE 5 The Union and Intersection of A, B, and C.

P.127
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2.3 Functions

e Definition 1: A ffrom A to B is
an assignment of exactly one element of B

to each element of A. f: A—>B
e Definition 2: f: A—B.
- A: of f, B: of f.
- fla)=b, a: of b, b: of a.
of f: the set of all images of elements of

A
- fimaps A to B



FIGURE 1

X — 2x+1

Range
or
Image

Domain Co-domian

FIGURE 1.1: An example of function with it’s components.



FIGURE 2

X — 2x+1

Range
or
Image

Domain Co-domian

FIGURE 1.2: An example of not being function



FIGURE 3

Range
or
Image

Domain Co-domian

FIGURE 1.3: An example of not being function
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Q

FIGURE 2 The Function f Maps A4 to B.



e Definition 3: Let f; and f, be functions

from A to R. f;+f, and f;f, are also
functions from A to R:

= (1t (X) = f1(x)+2(%)
= (12 (X)=f(X)f(x)

e Definition 4: f: A—B, S is a subset of A.
The image of S under the function f is:

f(S)={t[3seS(t=/(s));




One-to-One and Onto Functions

e Definition 5: A function fis or
, iff fla)=f(b) implies that a=b for all a
and b in the domain of f.
— YaVb(f{a)=fb) = a=b ) or

Vavb(a=b — fla) # f(b) )
e Definition 6: A function f is if
fx)=f(y), and if f(x)<f(y)
whenever x<y. f is called if f(x)2f(v),

and if f(x)>f(y) whenever x<y.
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a ® ® |
b ® ®?
c ® ® 3
d e — ®4

® 5

FIGURE 3 A One-to-One Function.



One-to-One and Onto Functions

e Definition 7: A function fis or
, iff for every element beB there
is an element ae€A with f(a)=b.
- vy3x( f(x)=y ) or
Yavb(a#b— fla) £ f(b) )
— When
e Definition 8: A function fis a
or a if it is both
one-to-one and onto.

- Ex: identity function t,(x)=x
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FIGURE 4 An Onto Function.



(a) One-to-one,
not onto

ol
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he

o3
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e

FIGURE 5 (2.3)
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(b) Onto.
not one-to-once

ae

el
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be

ce

de

(d) Neither one-to-one
nor onto
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(e) Not a function

el
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ce

o4

FIGURE 5 Examples of Different Types of Correspondences.



Inverse Functions and Compositions of
Functions

e Definition 9: Let f be a one-to-one
correspondence from A to B. The inverse
function of f is the function that assigns to
an element b in B the unique element a in
A such that f(a)=b.

- f1(b)=a when f(a)=b

Prove It

If a function is one-to-one correspondence then it’s inverse is possible
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f7(b)

®
f(a) b =f(a)

FIGURE 6 The Function f -!Is the Inverse of Function f.



e Definition 10: Let g be a function from A
to B, and f be a function from B to C. The
of functions f and g, denoted
by fOg, is defined by:
- feg(a) = flg(a))

- fOg and gof are not equal --- Prove it
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(f ogla)

f(gla))

FIGURE 7 The Composition of the Functions f and g.



Let f and g be the functions from the set of integers to the set of integers defined by
fx)="2x 43 and gx) = 3x + 2. What is the composition of f and g? What is the com-
position of g and f?

Solution: Both the compositions f o g and g o f are defined. Moreover,
(fog)a) = flgle) = fr+0=23r+0) +3= 61+

and

(20 f)(0) =gl (5) = gl +3)=3(2x + 3 + 2= 411,



Graphs of Functions

e Definition 11: The of function fis
the set of ordered pairs {(a,b)/acA and

fla)=bj}
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FIGURE 8 The Graph of f(n) =2n + 1 from Z to Z.
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®(-3,9)

e(—2,4)

-1,1) e

2,4) @

®(l,1)

3,9 e

&

(0,0)

FIGURE 9 The Graph of f(x) = x2 from Z to Z.



Floor and Ceil Functions

e Definition 12: The assigns
to x the largest integer that is less than or
equal to x (Lx/] or [x])..

e Definition 13: The assigns
to x the smallest integer that is greater
than or equal to x (| x |)
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3 - 3 -1 Oo—=e
2 —+ >—— 2 D m——
| + e—O | ¢—eo
—t—+——4¢—1+— —t———+—1+—
-3 =2 -] 1 2 3 -3 =% =] 1 2 3
.TG- O—.—l £
*—0-2 + —e -2 +
*r— -3 1 -3 1+
(a) v=|x] (b) y=[x]

FIGURE 10 Graphs of the (a) Floor and (b) Ceiling Functions.



TABLE 1 (2.3)

TABLE 1 Useful Properties of the Floor

and Ceiling Functions.

(m is an integer, x is a real number)

(1a)
(1b)
(1c)
(1d)

it and only if n
it and only if n
if and only if x

if and only if x

x =n—+1
l = x <=n
]l =n < x
n =x +1

(3b) [—x] = —Lx]
(4a) |x +n] = |x]| +n
(4b) [x4+n]l =[x]+n




Proof: 4(a)

* Let |x| = m where 1 is a positive integer.
¢ By PI'OPEI"CY

m<x<m+l
* Adding  on both sides
m+n<x+n<m+n+l
* Using /(x) again
Ix+n|=m+n
Ix+n|=|x|+mn



* A useful approach for considering statements
about the floor function is to let

x=n+g
* where
n=|x|, 0<e< 1
* For ceil
X=1n—&
* where

n=|[x]|,0< <1



¢
D

¢
o

Proof: | 2x] = |x] + |x + %J

Lol y=atbpearnans e )

where 0< £< 1 and n= [xl ...... (c) is an integer
Two cases to consider, depending on whether ¢ is less than, or greater
than or equal to % :

First let 0< &< % cee evneee eee e aen aen ee sen arn vn aeneen e e (2)

orf=< 2e<1
Promm L) 2 = A e et st s e F )
and |[2x]| =
Similarly from (1) x+%= 1 +%+ gand |2x|=2n ... ... (a)

From(Z)%S 8+§<1 or0< 3-!—% <1
and so lx+ %J = .......(b)
From (a) and (b)+(c), |2x] =2 n and [x] + \x-i- %J =n+n=2n



Proof: | 2x] = |x]| + lx + %J

00 Let < 8< 1 BEE FEE BN SRS AR BEE FEE BEE KRR BEE 000-(4)

0r]<23<20r0< e — <1
“From(3)2x=2n+2e=2n+ 1)+ 2¢c—-1)
and |12x]=2n+1 ....(x)

¢ Similarly from (1)x+%-=n+%+ e=n+1)+ (3-15) ...... (y)
“*From#4)0< ¢ —%<%010<3 —%<1
and so lx+ %J S e )

% From (x) and (y)+(c), [2x] =2 n +1and |x] + \x x 1‘ =n+n+1=
P I g

So |2x] = |x] + |x + 2
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2.4 Sequences and Summations

e Definition1: A is a function
from a subset of the set of integers to a set
S. We use a, to denote the image of the
integer n (a term of the sequence)

— The sequence {a,}
e Ex: a,=1/n




e Definition 2: A is a
sequence of the form
a, ar, ars, ..., arnh ...
where the initial term a and the common ratio r are
real numbers

e Definition 3: A is a
sequence of the form
a, a+d, a+2d, ..., a+nd, ...
where the initial term a and the common difference
d are real numbers




59047

.1,3,57,9, ..
.1,2,2,3,3,3,4,4,4,4, .
.1,7,25,79, 241,727, 2185, 6559, 19681,



TABLE 1 (2.4)

© The McGraw-Hill Companies, Inc. all rights reserved.

TABLE 1 Some Useful Sequences.

nth Term First 10 Terms
n’ 1,4,9, 16, 25, 36, 49, 64, 81, 100,.. .
n’ 1,8, 27,:69,.125, 216,343, 512,729, 1000,...
n? 1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,.. .
2" 2,4, 8, 16, 32, 64, 128, 256, 512, 1024, .. .
3 3,9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,.. .
n! 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, .. .




Summing a Sequence

e Specific sum
1+2+3+....+n-1+n

e General summation of a sequence of terms:

a, terms

wherek=1,2, .. n



Summing a Sequence

e Each element a; of a sum is called a term.
e The terms are often specified implicitly
as formulas that follow a readily

perceived pattern.

e In such cases we must sometimes write
them in an expanded form so that the

meaning is clear.



Summing a Sequence

1+2+.......
1+2+.... +2n1
1+2+4+...... +2n1

204 21 4 22 4, ... + 201

The three-dots notation has many uses, but it
can be ambiguous and a bit long-winded



Delimited Form of Sum

e Three-dots notation is vague and wordy
n
) o
k=1

which 1s also called Sigma-notation because 1t

uses the Greek letterz'_



Delimited Form of Sum

e Parts of notation
- Summand
- Index variable
- Lower limit

- Upper limit



Delimited Form of Sum

e Sigma notation inline

Zi-1k



Delimited Form of Sum

n
) o
k=1

Sums the terms a, where index Kk is an integer

from lower limit 1 to upper limit n

or

sum over k from 1 to n



Generalized Sigma-Notation

e Specify a condition that the index variable

Y o

1<kgn

must satisfy

e We simply write one or more conditions
under the Zto specify the set of indices over

which summation should take place.



Generalized Sigma-Notation

e The general form allows us to take sums
over index sets that aren’t restricted to

consecutive integers.



Generalized Sigma-Notation

e Express the sum of the squares of all odd

positive integers below 100

kZ
1<k« 100
k odd

e The delimited equivalent of this sum
49

Y (2k+1)?

k=0



Generalized Sigma-Notation

e The sum of reciprocals of all prime

numbers between 1 and N

-4

DI

p prime

e The delimited equivalent of this sum
T(N]
Z l (N) = Number of primes given
1 Pk



Advantage of Generalized Sigma-
Notation

e We can manipulate it more easily than the

delimited form



Advantage of Generalized Sigma-
Notation

e Change the index variable kto k + 1

e Generalized Sigma-notation
Z Ay = Z Ak+1
1<k<n 1<k+1<n

e Delimited form

n--1

n
Z ay = Z k41
k=1 k=0



Advantage of Delimited Form

e It's nice and tidy, and we can write it
quickl-n

Sa = Y w
k=1

1<kgn

e Needs less symbol than generalized sigma
notation.



Delimited Form Vs. Generalized
Sigma-Notation

e Delimited Form

— Used in presenting or stating a problem

e Generalized Sigma-Notation

- Used when index variable needs to be

transformed.



Summations

e Summation notation:

L n
a -
Z“j
j=m

- a,,*d,,.1+...+d,
— j: index of summation
- m: lower limit

— n: upper limit



e Theorem 1 (geometric series): If aand r are
real numbers and r#0, then

— Prove it yourself



Proof: Let _ _ _ _ ,
' To compute §, first multiply both sides of the equality by r and then manipulate the resulting

sum as follows:

n
S, = Ear’. n
j=0

rSp=r E ar! substituting summation formula for §
j=0
n
= Z arit! by the distributive property
j=0
n+1
= ark shifting the index of summation, withk = j + 1
k=1
n
= (Z ar* + (ar"+] —a) removing k = n + 1 term and adding k = () term
k=0
=5, + (@t —a) substituting § for summation formula

From these equalities, we see that
rS, =8, + (arHH —a).
Solving for S, shows that if r # 1, then

arn+1 —a

r—1

Ifr =1 thenthe S, = Y} _gar/ = Y|_ya=(n+la. <



TABLE 2 Some Useful Summation

Formulae.

Sum Closed Form

" T
Zar"'(r#O) ar g r#1
k=0 ¥l

ik nn+1)
k=1 2

i:kp_ n(n + 1)2n + 1)
k=1 6

z":k3 n’(n + 1)
k=1 4

. I

Zx", x| < 1
k=0 I —x

= 1

Z,kx"", x| < 1 -
o=y (1 —x)°

Copyright © The McGraw-Mill Companies, inc,
PRrmission requated for reprocuction or deplay



Cardinality

e Definition 4: The sets A and B have the
iff there is a one-to-one
correspondence from A to B.

e Definition 5: A set that is either finite or has the
same cardinality as the set of positive integers is
called . A set that is not countable is
called . When an infinite set S is
countable, |S|=X, (“aleph null”)

— Ex: the set of odd positive integers is countable




FIGURE 1 (2.4)
11 12 .

1

10 .
3 15 17 19 21 23 ..

bt —i———
Al ——— O
N el— A0
—] —el—
D —e—
—ii——— (T

[R—
[E—

FIGURE 1 A One-to-One Correspondence Between Z.* and
the Set of Odd Positive Integers, f(n) = 2n - 1.
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Terms not circled (
are not listed

@ 2 4
because they / . / -
repeat previously 3 4 5
listed terms @ @ 3 3 3

C/ z/ 3 45
/4 4 4 4

2 3 4 S

5 5 5 5

FIGURE 2 The Positive Rational Numbers Are Countable.

(M) BREZR P.159



dLletS ={-1,0,2,4,7}. Find £(S)if
f(x)= x/5 .

Apply f(x)=x/5to each x€S:



If x 1s a real number and m is an integer, then prove that
|[x+m]=[x]+m.

Express x in terms of its ceiling:

Let [x]=n, where n is the smallest integer greater than or equal
to X.

By definition of the ceiling function:

n—1<x<n.

Add the integer mm to all parts of the inequality:
(n—1)+m<x+m<n+m.

Simplifying:

(n+m)—I<x+m=<n+m.

Apply the ceiling function to x+m:

The nequality (n+m)—1<x+m<n-+m shows that x+m lies in the
interval between (n+m)—1 and n+m.

By definition, the ceiling of x+m is the smallest integer greater
than or equal to x+m, which 1s n+m:

[x+m]=n+m.

Substitute [x]=n:

[x+m]=[x]+m.
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