

# **Chapter 8: Relations**



Kenneth H. Roser

- Relations(8.1)
- n-any Relations & their Applications (8.2)
- Representing Relations (8.3)
- Equivalence Relations (8.5)

# Relations (8.1)



Relationship between a program and its variables

- Integers that are congruent modulo k

 Pairs of cities linked by airline flights in a network



### Relations & their properties

- Definition 1

Let A and B be sets. A binary relation from A to B is a subset of A \* B.

In other words, a binary relation from A to B is a set R of ordered pairs where the first element of each ordered pair comes from A and the second element comes from B.



- Notation:

$$aRb \Leftrightarrow (a, b) \in R$$
  
 $aRb \Leftrightarrow (a, b) \notin R$ 



| R | a | b |
|---|---|---|
| 0 | X | X |
| 1 | X |   |
| 2 |   | X |



#### - Example:

A = set of all cities

B = set of the 50 states in the USA Define the relation R by specifying that (a, b) belongs to R if city a is in state b.

```
(Boulder, Colorado)
(Bangor, Maine)
(Ann Arbor, Michigan) are in R.
(Cupertino, California)
Red Bank, New Jersey)
```



#### Functions as relations

- The graph of a function f is the set of ordered pairs (a, b) such that b = f(a)
- The graph of f is a subset of A \* B ⇒ it is a relation from A to B
- Conversely, if R is a relation from A to B such that every element in A is the first element of exactly one ordered pair of R, then a function can be defined with R as its graph

#### Relations on a set

- Definition 2

A relation on the set A is a relation from A to A.

Example: A = set {1, 2, 3, 4}. Which ordered pairs are in the relation R = {(a, b) | a divides b}

Solution: Since (a, b) is in R if and only if a and b are positive integers not exceeding 4 such that a divides b

$$R = \{(1,1), (1,2), (1.3), (1.4), (2,2), (2,4), (3,3), (4,4)\}$$

Properties of Relations

- Definition 3

A relation R on a set A is called reflexive if  $(a, a) \in R$  for every element  $a \in A$ .

- Example (a): Consider the following relations on {1, 2, 3, 4}

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

Which of these relations are reflexive?

#### Solution:

 $R_3$  and  $R_5$ : reflexive  $\Leftarrow$  both contain all pairs of the form (a, a): (1,1), (2,2), (3,3) & (4,4).

 $R_1$ ,  $R_2$ ,  $R_4$  and  $R_6$ : not reflexive  $\Leftarrow$  not contain all of these ordered pairs. (3,3) is not in any of these relations.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```



#### - Definition 4:

A relation R on a set A is called symmetric if  $(b, a) \in R$  whenever  $(a, b) \in R$ , for all a,  $b \in A$ .  $(\forall a,b \in A, (a,b) \in R \Longrightarrow (b,a) \in R)$  A relation R on a set A such that  $(a, b) \in R$  and  $(b, a) \in R$  only if a = b, for all  $a, b \in A$ , is called antisymmetric.

 $\forall a,b \in A, (a,b) \in R \land (b,a) \in R \Longrightarrow a=b$ 

- Example: Which of the relations from example (a) are symmetric and which are antisymmetric?

#### Solution:

 $R_2$  &  $R_3$ : symmetric  $\leftarrow$  each case (b, a) belongs to the relation whenever (a, b) does.

For R<sub>2</sub>: only thing to check that both (1,2) & (2,1) belong to the relation

For  $R_3$ : it is necessary to check that both (1,2) & (2,1) belong to the relation.

None of the other relations is symmetric: find a pair (a, b) so that it is in the relation but (b, a) is not.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```



#### Solution (cont.):

❖  $R_4$ ,  $R_5$  and  $R_6$ : antisymmetric ←for each of these relations there is no pair of elements a and b with a ≠ b such that both (a, b) and (b, a) belong to the relation.

None of the other relations is antisymmetric.: find a pair (a, b) with  $a \ne b$  so that (a, b) and (b, a) are both in the relation.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

#### - Definition 5:

A relation R on a set A is called transitive if whenever  $(a, b) \in R$  and  $(b,c) \in R$ , then  $(a, c) \in R$ , for all  $a, b, c \in R$ .

- Example: Which of the relations in example (a) are transitive?
- ❖  $R_4$ ,  $R_5$  &  $R_6$ : transitive  $\Leftarrow$  verify that if (a, b) and (b, c) belong to this relation then (a, c) belongs also to the relation  $R_4$  transitive since (3,2) and (2,1), (4,2) and (2,1), (4,3) and (3,1), and (4,3) and (3,2) are the only such sets of pairs, and (3,1), (4,1) and (4,2) belong to  $R_4$ . Same reasoning for  $R_5$  and  $R_6$ .
- $R_1$ : not transitive  $\Leftarrow$  (3,4) and (4,1) belong to  $R_1$ , but (3,1) does not.
- $R_2$ : not transitive  $\leftarrow$  (2,1) and (1,2) belong to  $R_2$ , but (2,2) does not.
- $R_3$ : not transitive  $\Leftarrow$  (4,1) and (1,2) belong to  $R_3$ , but (4,2) does not.

```
R_1 = \{(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)\}
R_2 = \{(1,1), (1,2), (2,1)\}
R_3 = \{(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)\}
R_4 = \{(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)\}
R_5 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)\}
R_6 = \{(3,4)\}
```

#### Combining relations

#### - Example:

Let A =  $\{1, 2, 3\}$  and B =  $\{1, 2, 3, 4, \}$ . The relations  $R_1 = \{(1,1), (2,2), (3,3)\}$  and  $R_2 = \{(1,1), (1,2), (1,3), (1,4)\}$  can be combined to obtain:

$$R_1 \cup R_2 = \{(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)\}$$
  
 $R_1 \cap R_2 = \{(1,1)\}$   
 $R_1 - R_2 = \{(2,2), (3,3)\}$   
 $R_2 - R_1 = \{(1,2), (1,3), (1,4)\}$ 



#### Definition 6:

Let R be a relation from a set A to a set B and S a relation from B to a set C. The composite of **R** and **S** is the relation consisting of ordered pairs (a, c), where  $a \in A$ ,  $c \in C$ , and for which there exists an element  $b \in B$  such that  $(a, b) \in R$  and  $(b, c) \in S$ . We denote the composite of R and S by  $\mathbf{S} \circ \mathbf{R}$ .  $(S \circ R = \{(a,c) | \exists b \in B, (a,b) \in R \land (b,c) \in S\})$ 

Example: What is the composite of the relations R and S where R is the relation from {1,2,3} to {1,2,3,4} with R = {(1,1), (1,4), (2,3), (3,1), (3,4)} and S is the relation from {1,2,3,4} to {0,1,2} with S = {(1,0), (2,0), (3,1), (3,2), (4,1)}?

Solution: S R is constructed using all ordered pairs in R and ordered pairs in S, where the second element of the ordered in R agrees with the first element of the ordered pair in S.

For example, the ordered pairs (2,3) in R and (3,1) in S produce the ordered pair (2,1) in S  $^{\circ}$  R. Computing all the ordered pairs in the composite, we find

$$S \circ R = ((1,0), (1,1), (2,1), (2,2), (3,0), (3,1))$$

Relationship among elements of more than 2 sets often arise: n-ary relations

Airline, flight number, starting point, destination, departure time, arrival time

#### N-ary relations

- Definition 1:

Let  $A_1$ ,  $A_2$ , ...,  $A_n$  be sets. An n-ary relation on these sets is a subset of  $A_1 * A_2 * ... * A_n$  where  $A_i$  are the domains of the relation, and n is called its degree.

Example: Let R be the relation on N \* N \* N consisting of triples (a, b, c) where a, b, and c are integers with a<b<c. Then (1,2,3) ∈ R, but (2,4,3) ∉ R. The degree of this relation is 3. Its domains are equal to the set of integers.</li>





- Relational database model has been developed for information processing
- A database consists of records, which are ntuples made up of fields
- The fields contains information such as:
  - Name
  - Student #
  - Major
  - Grade point average of the student

 The relational database model represents a database of records or n-ary relation

 The relation is R(Student-Name, Id-number, Major, GPA)

- Example of records

```
(Smith, 3214, Mathematics, 3.9)
(Stevens, 1412, Computer Science, 4.0)
(Rao, 6633, Physics, 3.5)
(Adams, 1320, Biology, 3.0)
(Lee, 1030, Computer Science, 3.7)
```

#### TABLE A: Students

| Students<br>Names | ID#  | Major            | GPA |
|-------------------|------|------------------|-----|
| Smith             | 3214 | Mathematics      | 3.9 |
| Stevens           | 1412 | Computer Science | 4.0 |
| Rao               | 6633 | Physics          | 3.5 |
| Adams             | 1320 | Biology          | 3.0 |
| Lee               | 1030 | Computer Science | 3.7 |



### Operations on n-ary relations

 There are varieties of operations that are applied on n-ary relations in order to create new relations that answer eventual queries of a database

#### - Definition 2:

Let R be an n-ary relation and C a condition that elements in R may satisfy. Then the selection operator s<sub>C</sub> maps n-ary relation R to the n-ary relation of all n-tuples from R that satisfy the condition C.

#### - Example:

if  $s_C$  = "Major = "computer science"  $\land$  GPA > 3.5" then the result of this selection consists of the 2 four-tuples:

(Stevens, 1412, Computer Science, 4.0) (Lee, 1030, Computer Science, 3.7)

### Selection Operator

- Notation:  $\sigma_p(r)$
- p is called the selection predicate
- Defined as:

$$\sigma_p(r) = \{t \mid t \in r \text{ and } p(t)\}$$

Where p is a formula in propositional calculus consisting of **terms** connected by :  $\land$  (and),  $\lor$  (or),  $\neg$  (not) Each **term** is one of:

<attribute>op <attribute> or <constant> where op is one of: =,  $\neq$ , >,  $\geq$ . <.  $\leq$ 

#### - Definition 3:

The projection  $P_{i_1,i_2,...,i_m}$  maps the n-tuple  $(a_1,a_2,...,a_n)$  to the m-tuple  $(a_{i_1},a_{i_2},...,a_{i_m})$  where  $m \le n$ .

In other words, the projection  $P_{i_1,i_2,...,i_m}$  deletes n - m of the components of n-tuple, leaving the  $i_1$ th,  $i_2$ th, ..., and  $i_m$ th components.

Example: What relation results when the projection
 P<sub>1.4</sub> is applied to the relation in Table A?

Solution: When the projection  $P_{1,4}$  is used, the second and third columns of the table are deleted, and pairs representing student names and GPA are obtained. Table B displays the results of this projection.

TABLE B: GPAs

| Students<br>Names | GPA |
|-------------------|-----|
| Smith             | 3.9 |
| Stevens           | 4.0 |
| Rao               | 3.5 |
| Adams             | 3.0 |
| Lee               | 3.7 |

#### - Definition 4:

Let R be a relation of degree m and S a relation of degree n. The join  $J_p(R,S)$ , where  $p \le m$  and  $p \le n$ , is a relation of degree m+n-p that consists of all (m+n-p)-tuples  $(a_1, a_2, ..., a_{m-p}, c_1, c_2, ..., c_p, b_1, b_2, ..., b_{n-p})$ , where the m-tuple  $(a_1, a_2, ..., a_{m-p}, c_1, c_2, ..., c_p)$  belongs to R and the n-tuple  $(c_1, c_2, ..., c_p, b_1, b_2, ..., b_{n-p})$  belongs to S.

Example: What relation results when the operator J<sub>2</sub> is used to combine the relation displayed in tables C and D?



TABLE C: Teaching

Assignments

| - | Professor | Dpt              | Course # |
|---|-----------|------------------|----------|
|   | Cruz      | Zoology          | 335      |
|   | Cruz      | Zoology          | 412      |
|   | Farber    | Psychology       | 501      |
|   | Farber    | Psychology       | 617      |
|   | Grammer   | Physics          | 544      |
|   | Grammer   | Physics          | 551      |
|   | Rosen     | Computer Science | 518      |
|   | Rosen     | Mathematics      | 575      |

TABLE D: Class Schedule

| Dpt              | Course # | Room | Time     |
|------------------|----------|------|----------|
| Computer Science | 518      | N521 | 2:00 PM  |
| Mathematics      | 575      | N502 | 3:00 PM  |
| Mathematics      | 611      | N521 | 4:00 PM  |
| Physics          | 544      | B505 | 4:00 PM  |
| Psychology       | 501      | A100 | 3:00 PM  |
| Psychology       | 617      | A110 | 11:00 AM |
| Zoology          | 335      | A100 | 9:00 AM  |
| Zoology          | 412      | A100 | 8:00 AM  |

# Solution: The join J<sub>2</sub> produces the relation shown in Table E

Table E:
Teaching
Schedule

| Professor | Dpt              | Course # | Room | Time     |
|-----------|------------------|----------|------|----------|
| Cruz      | Zoology          | 335      | A100 | 9:00 AM  |
| Cruz      | Zoology          | 412      | A100 | 8:00 AM  |
| Farber    | Psychology       | 501      | A100 | 3:00 PM  |
| Farber    | Psychology       | 617      | A110 | 11:00 AM |
| Grammer   | Physics          | 544      | B505 | 4:00 PM  |
| Rosen     | Computer Science | 518      | N521 | 2:00 PM  |
| Rosen     | Mathematics      | 575      | N502 | 3:00 PM  |

 Example: We will illustrate how SQL (Structured Query Language) is used to express queries by showing how SQL can be employed to make a query about airline flights using Table F. The SQL statements

```
SELECT departure_time
FROM Flights
WHERE destination = 'Detroit'
```

are used to find the projection  $P_5$  (on the departure\_time attribute) of the selection of 5-tuples in the flights database that satisfy the condition: destination = "Detroit". The output would be a list containing the times of flights that have Detroit as their destination, namely, 08:10, 08:47, and 9:44.

#### Table F: Flights

| Airline | Flight # | Gate | Destination | Departure time |
|---------|----------|------|-------------|----------------|
| Nadir   | 122      | 34   | Detroit     | 08:10          |
| Acme    | 221      | 22   | Denver      | 08:17          |
| Acme    | 122      | 33   | Anchorage   | 08:22          |
| Acme    | 323      | 34   | Honolulu    | 08:30          |
| Nadir   | 199      | 13   | Detroit     | 08"47          |
| Acme    | 222      | 22   | Denver      | 09:10          |
| Nadir   | 322      | 34   | Detroit     | 09:44          |

## Union Operation - Example

Relations A

 α
 1

 α
 2

 β
 1

A B
α 2
β 3

• r U s:

| A | В |
|---|---|
| α | 1 |
| α | 2 |
| β | 1 |
| β | 3 |

### Set Difference Operation – Example

Relations I A I

α 1 α 2 β 1

| Α | В |  |  |  |
|---|---|--|--|--|
| α | 2 |  |  |  |
| β | 3 |  |  |  |
| S |   |  |  |  |

• r - s:

| Α | В |
|---|---|
| α | 1 |
| β | 1 |

### Cartesian-Product Operation – Example

Relations r, s:

| Α | В |        | С               | <b>b</b> | Ε      |
|---|---|--------|-----------------|----------|--------|
| α | 1 |        | α               | 1        | а      |
| β | 2 |        | $\beta$ $\beta$ | 0        | a<br>b |
| r |   |        | γ               | ō        | b      |
|   |   | 1<br>0 |                 | \$       |        |
|   |   | 4      |                 |          |        |

• r x s:

| A  | В | С  | <b>b</b> | E |  |
|----|---|----|----------|---|--|
| ø. | 1 | a. | 2        | а |  |
| α  | 1 | β  | 0        | а |  |
| a. | 1 | β  | 1        | b |  |
| a. | 1 | γ  | 0        | b |  |
| β  | 2 | α  | 1        | а |  |
| β  | 2 | β  | 0        | а |  |
| β  | 2 | β  | 1        | b |  |
| β  | 2 | γ  | 0        | b |  |

### Banking Example

branch (branch\_name, branch\_city, assets)

customer (customer\_name, customer\_street, customer\_city)

account (account\_number, branch\_name, balance)

loan (loan\_number, branch\_name, amount)

depositor (customer\_name, account\_number)

borrower (customer\_name, loan\_number)

## **Example Queries**

Find all loans of over \$1200

 Find the loan number for each loan of an amount greater than \$1200

$$\Pi_{loan\_number}$$
 ( $\sigma_{amount > 1200}$  (loan))

 Find the names of all customers who have a loan, an account, or both, from the bank

$$\Pi_{customer\_name}$$
 (borrower)  $\cup \Pi_{customer\_name}$  (depositor)

### **Example Queries**

 Find the names of all customers who have a loan at the Perryridge branch.

 σ<sub>branch\_name="Perryridge"</sub>

```
customer_name ` branch_name="Perryridge"

(σ
borrower.loan_number = loan.loan_number

(borrower x loan)))
```

 Find the names of all customers who have a loan at the Perryridge branch but do not have an account at any branch of the bank.

```
\Pi_{customer\_name} (\sigma_{branch\_name} = "Perryridge"

(\sigma_{borrower.loan\_number} (borrower x loan))) - \Pi_{customer\_name} (depositor)
```

 Find the name of all customers who have a loan at the bank and the loan amount

- Find all customers who have an account from at least the "Downtown" and the Uptown" branches.
- Query 1

$$\prod_{customer\_name} (\sigma_{branch\_name = "Downtown"} (depositor account)) \cap$$

$$\prod_{customer\_name} (\sigma_{branch\_name = "Uptown"} (depositor account))$$

# Representing Relations (8.3)

First way is to list the ordered pairs

Second way is through matrices

Third way is through direct graphs

### Representing Relations (8.3)

Representing relations through matrices

$$m_{ij} = \begin{cases} 1 & if (a_i, b_j) \in R \\ 0 & otherwise \end{cases}$$

- Example: Suppose that the relation R on a set is represented by the matrix:

$$M_R = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ \lfloor 0 & 1 & 1 \end{bmatrix}$$

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Since all the diagonal elements of this matrix are equal to 1, R is reflexive. Moreover, since  $M_R$  is symmetric  $\Rightarrow$  R is symmetric. R is not antisymmetric.

#### **Reflexive Relations:**

The matrix has 1's on the diagonal (if A=B).

Example:  $R = \{(1,1),(2,2),(3,3)\} \rightarrow Identity matrix.$ 

**Symmetric Relations:** 

The matrix is **symmetric**  $(M_R = M_R^T)$ .

Example:  $R = \{(1,2),(2,1),(2,3),(3,2)\}$ 

#### **Transitive Relations:**

If  $M_R^2$  has non-zero entries where  $M_R$  has zeros, the relation is not transitive.

### Representing Relations (8.3)

Representing relations using diagraphs

Definition 1:

A directed graph, or diagraph, consists of a set V of vertices (or nodes) together with a set E of ordered pairs of elements of V called edges (or arcs). The vertex a is called the initial vertex of the edge (a, b), and the vertex b is called the terminal vertex of this edge.

### Representing Relations (8.3)

- Example: The directed graph with vertices a, b, c and d, and edges (a,b), (a,d), (b,b), (b,d), (c,a) and (d,b). The edge (b,b) is called a loop.



- Students registration time with respect to the first letter of their names
- R contains (x,y) \( \infty \) x and y are students with last names beginning with letters in the same block
- 3 blocks are considered: A-F, G-O, P-Z
- R is reflexive, symmetric & transitive
- The set of student is therefore divided in 3 classes depending on the first letter of their names

#### Definition 1

A relation on a set A is called an equivalence relation if it is reflexive, symmetric and transitive.

### Examples

:

- Suppose that R is the relation on the set of strings of English letters such that aRb if and only if I(a) = I(b), where I(x) is the length of the string x. Is R an equivalence relation?
   Solution: R is reflexive, symmetric and transitive ⇒ R is an equivalence relation
- A divides b; is it an equivalence relation?

### Equivalence classes

#### - Definition 2:

Let R be an equivalence relation on a set A. The set of all elements that are related to an element a of A is called the equivalence class of a. The equivalence class of a with respect to R is denoted by [a]<sub>R</sub>. When only one relation is under consideration, we will delete the subscript R and write [a] for this equivalence class.

 Example: What are the equivalences classes of 0 and 1 for congruence modulo 4?

#### Solution:

The equivalence class of 0 contains all the integers a such that  $a \equiv 0 \pmod{4}$ . Hence, the equivalence class of 0 for this relation is

$$[0] = \{..., -8, -4, 0, 4, 8, ...\}$$

The equivalence class of 1 contains all the integers a such that  $a \equiv 1 \pmod{4}$ . The integers in this class are those that have a remainder of 1 when divided by 4. Hence, the equivalence class of 1 for this relation is

$$[1] = \{..., -7, -3, 1, 5, 9, ...\}$$

#### Congruence Modulo m

Definition: Two integers a and b are congruent modulo m iff they have the same remainder when divided by m.

denoted by:  $a \equiv b \pmod{m}$ 

read as: a is congruent to b modulo m.

Example 1: What is the equivalence class of 2 with respect to congruence modulo 5? Solution: The equivalence class of 2 contains all integers x such that  $x \equiv 2 \pmod{5}$ .

i.e.,  $x \mod 5 = 2 \mod 5$ 

What is 2 mod 5?  $[2] = \{..., -8, -3, 2, 7, 12, ...\}$ 2 mod 5 = 2





- Theorem 1:

Let R be an equivalence relation on a set A. These statements are equivalent:

- i. aRb
- ii. [a] = [b]
- iii. [a]  $\cap$  [b]  $\neq \emptyset$

#### - Theorem 2:

Let R be an equivalence relation on a set S. Then the equivalence classes of R form a partition of S. Conversely, given a partition  $\{A_i \mid i \in I\}$  of the set S, there is an equivalence relation R that has the sets  $A_i$ ,  $i \in I$ , as its equivalence classes.

- Example: List the ordered pairs in the equivalence relation R produced by the partition  $A_1 = [1,2,3]$ ,  $A_2 = \{4,5\}$  and  $A_3 = \{6\}$  of  $S = \{1,2,3,4,5,6\}$ 

Solution: The subsets in the partition are the equivalences classes of R. The pair  $(a,b) \in R$  if and only if a and b are in the same subset of the partition.

The pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1), (3,2) and (3,3)  $\in R \Leftarrow A_1 = [1,2,3]$  is an equivalence class. The pairs (4,4), (4,5), (5,4) and (5,5)  $\in R \Leftarrow A_2 = \{4,5\}$  is an equivalence class. The pair (6,6)  $\in R \Leftarrow \{6\}$  is an equivalence class.

No pairs other than those listed belongs to R.

Let  $S=\{1,2,3,4\}$  and R be:  $R=\{(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3,4),(4,3)\}$ . **Equivalence Classes:**  $[1]=[2]=\{1,2\}, [3]=[4]=\{3,4\}.$ 

**Partition**:  $S = \{1,2\} \cup \{3,4\}$ .

Example: Let  $A = \{1, 2, 3, 4, 5\}$ 

 $R = \{(a, b) \mid a+b \text{ is even}\}\$  (Relation R is defined on set A)

First, we have to check whether R is an equivalence relation or not.

- (i) Reflexive: a+a=2a
- (ii) Symmetric: a+b is even → b+a is even
- (iii) Transitive:

a+b is even and b+c is even → a+c is even

Both a and b can be either even or odd.

If a is even and b is even

b is even and c is even, then a+c is even.

If a is odd and b is odd

b is odd and c is odd, then a+c is even.

Therefore, R is an equivalence relation.

[1] = {1, 3, 5} because 1R1, 1R3, 1R5.

$$[2] = \{2, 4\}$$

$$[3] = \{1, 3, 5\}$$

$$[4] = \{2, 4\}$$

$$[5] = \{1, 3, 5\}$$

- ❖ Reflexive + Transitive → Preorder
- **Reflexive + Symmetric + Transitive** → Equivalence Relation
- **Reflexive + Antisymmetric + Transitive** → Partial Order

