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Chapter 8: Relations

Relations(8.1)

n-any Relations & their Applications (8.2) 

Representing Relations (8.3)

Equivalence Relations (8.5)
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Relations (8.1)

Introduction

– Relationship between a program and its 

variables

– Integers that are congruent modulo k

– Pairs of cities linked by airline flights in a 

network
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Relations (8.1) (cont.) 

Relations & their properties

–  Definition 1

Let A and B be sets. A binary relation from A 
to B is a subset of A * B.

In other words, a binary relation from A to B is 
a set R of ordered pairs where the first 
element of each ordered pair comes from A 
and the second element comes from B.
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Relations (8.1) (cont.)

R a b

0

1

2

X X

X

X

–  Notation:

aRb  (a, b)  R 

aRb  (a, b)  R

0

a

1

b

2
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Relations (8.1) (cont.)

–  Example:

A = set of all cities

B = set of the 50 states in the USA

Define the relation R by specifying that (a, b) 

belongs to R if city a is in state b.

(Cupertino,California)

( Boulder,Colorado) 

( Bangor, Maine )


Red Bank, New Jersey) 


( Ann Arbor, Michigan) are in R.





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Relations (8.1) (cont.) 

Functions as relations

– The graph of a function f is the set of ordered 
pairs (a, b) such that b = f(a)

– The graph of f is a subset of A * B  it is a 
relation from A to B

– Conversely, if R is a relation from A to B such 
that every element in A is the first element of 
exactly one ordered pair of R, then a function 
can be defined with R as its graph
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Relations (8.1) (cont.)

Relations on a set

–  Definition 2

A relation on the set A is a relation from A to A.

–  Example: A = set {1, 2, 3, 4}. Which ordered pairs are 
in the relation R = {(a, b) | a divides b}

Solution: Since (a, b) is in R if and only if a and b are 
positive integers not exceeding 4 such that a divides b

R = {(1,1), (1,2), (1.3), (1.4), (2,2), (2,4), (3,3), (4,4)}
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Relations (8.1) (cont.)

Properties of Relations

–  Definition 3

A relation R on a set A is called reflexive if 

(a, a)  R for every element a  A.
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Relations (8.1) (cont.)

–  Example (a): Consider the following relations 
on {1, 2, 3, 4}

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}
R2 = {(1,1), (1,2), (2,1)}
R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1),
(4,4)}
R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}
R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3),
(3,4), (4,4)}
R6 = {(3,4)}

Which of these relations are reflexive?
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Relations (8.1) (cont.)

Solution:

R3 and R5: reflexive  both contain all pairs 

of the form (a, a): (1,1), (2,2), (3,3) & (4,4).

R1, R2, R4 and R6: not reflexive  not contain 

all of these ordered pairs. (3,3) is not in any 

of these relations.

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}

R2 = {(1,1), (1,2), (2,1)}

R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)}

R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}

R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}

R6 = {(3,4)}
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Relations (8.1) (cont.)

–  Definition 4:

A relation R on a set A is called symmetric if 

(b, a)  R whenever (a, b)  R, for all a,

b  A. (∀a,b∈A, (a,b)∈R⟹(b,a)∈R)

A relation R on a set A such that (a, b)  R 

and (b, a)  R only if a = b, for all a, b  A, is 

called antisymmetric.
∀a,b∈A, (a,b)∈R∧(b,a)∈R⟹a=b
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Relations (8.1) (cont.)

–  Example: Which of the relations from example (a) are symmetric 

and which are antisymmetric?

Solution:

❖ R2 & R3: symmetric  each case (b, a) belongs to the relation 

whenever (a, b) does.

For R2: only thing to check that both (1,2) & (2,1) belong to the 

relation

For R3: it is necessary to check that both (1,2) & (2,1) belong to

the relation.

None of the other relations is symmetric: find a pair (a, b) so that 

it is in the relation but (b, a) is not.

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}

R2 = {(1,1), (1,2), (2,1)}

R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (4,1), (4,4)}

R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}

R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}

R6 = {(3,4)}
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Relations (8.1) (cont.)

Solution (cont.):

❖ R4, R5 and R6: antisymmetric for each of these 

relations there is no pair of elements a and b with 

a  b such that both (a, b) and (b, a) belong to the 

relation.

None of the other relations is antisymmetric.: find a 

pair (a, b) with a  b so that (a, b) and (b, a) are both 

in the relation.

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}

R2 = {(1,1), (1,2), (2,1)}

R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)}

R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}

R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}

R6 = {(3,4)}
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Relations (8.1) (cont.)

–  Definition 5:

A relation R on a set A is called transitive if 

whenever (a, b)  R and (b,c)  R, then 

(a, c)  R, for all a, b, c  R.
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Relations (8.1) (cont.)

–  Example: Which of the relations in example (a) are 

transitive?

❖ R4 , R5 & R6 : transitive  verify that if (a, b) and (b, c) belong to

this relation then (a, c) belongs also to the relation

R4 transitive since (3,2) and (2,1), (4,2) and (2,1), (4,3) and (3,1), 

and (4,3) and (3,2) are the only such sets of pairs, and (3,1) , (4,1) 

and (4,2) belong to R4.

Same reasoning for R5 and R6.

❖ R1 : not transitive  (3,4) and (4,1) belong to R1, but (3,1) does not.

❖ R2 : not transitive  (2,1) and (1,2) belong to R2, but (2,2) does not.

❖ R3 : not transitive  (4,1) and (1,2) belong to R3, but (4,2) does not.

R1 = {(1,1), (1,2), (2,1), (2,2), (3,4), (4,1), (4,4)}

R2 = {(1,1), (1,2), (2,1)}

R3 = {(1,1), (1,2), (1,4), (2,1), (2,2), (3,3), (3,4), (4,1), (4,4)}

R4 = {(2,1), (3,1), (3,2), (4,1), (4,2), (4,3)}

R5 = {(1,1), (1,2), (1,3), (1,4), (2,2), (2,3), (2,4), (3,3), (3,4), (4,4)}

R6 = {(3,4)}
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Relations (8.1) (cont.)

Combining relations

–  Example:

Let A = {1, 2, 3} and B = {1, 2, 3, 4, }. The relations

R1 = {(1,1), (2,2), (3,3)} and

R2 = {(1,1), (1,2), (1,3), (1,4)} can be combined to

obtain:

R1  R2 = {(1,1), (1,2), (1,3), (1,4), (2,2), (3,3)} 

R1  R2 = {(1,1)}

R1 –  R2 = {(2,2), (3,3)}

R2 –  R1 = {(1,2), (1,3), (1,4)}
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Relations (8.1) (cont.)

–  Definition 6:

Let R be a relation from a set A to a set B and 

S a relation from B to a set C.

The composite of R and S is the relation 

consisting of ordered pairs (a, c), where a  

A, c  C, and for which there exists an 

element b  B such that (a, b)  R and (b, c)

 S. We denote the composite of R and S by

S  R. (S∘R={(a,c)∣∃b∈B,(a,b)∈R∧(b,c)∈S})



18

Relations (8.1) (cont.)

–  Example: What is the composite of the relations R 
and S where R is the relation from {1,2,3} to {1,2,3,4} 
with R = {(1,1), (1,4), (2,3), (3,1), (3,4)} and S is the
relation from {1,2,3,4} to {0,1,2} with S = {(1,0), (2,0),
(3,1), (3,2), (4,1)}?

Solution: S  R is constructed using all ordered pairs 
in R and ordered pairs in S, where the second 
element of the ordered in R agrees with the first 
element of the ordered pair in S.
For example, the ordered pairs (2,3) in R and (3,1) in 
S produce the ordered pair (2,1) in S  R. Computing 
all the ordered pairs in the composite, we find

S  R = ((1,0), (1,1), (2,1), (2,2), (3,0), (3,1)}
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N-ary Relations & their Applications (8.2)

Relationship among elements of more 

than 2 sets often arise: n-ary relations

Airline, flight number, starting point, 

destination, departure time, arrival time
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N-ary Relations & their Applications (8.2) (cont.)

N-ary relations

–  Definition 1:

Let A1, A2, … ,  An be sets. An n-ary relation on these 

sets is a subset of A1 * A2 * … *  An where Ai are the 

domains of the relation, and n is called its degree.

–  Example: Let R be the relation on N * N * N 

consisting of triples (a, b, c) where a, b, and c are 

integers with a<b<c. Then (1,2,3)  R, but

(2,4,3)  R. The degree of this relation is 3. Its 

domains are equal to the set of integers.
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N-ary Relations & their Applications (8.2) (cont.)

Databases & Relations

– Relational database model has been 
developed for information processing

– A database consists of records, which are n- 
tuples made up of fields

– The fields contains information such as:
• Name

• Student #

• Major

• Grade point average of the student
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N-ary Relations & their Applications (8.2) (cont.)

– The relational database model represents a 

database of records or n-ary relation

– The relation is R(Student-Name, Id-number, 

Major, GPA)
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N-ary Relations & their Applications (8.2) (cont.)

–  Example of records

(Smith, 3214, Mathematics, 3.9)

(Stevens, 1412, Computer Science, 4.0)

(Rao, 6633, Physics, 3.5)

(Adams, 1320, Biology, 3.0)

(Lee, 1030, Computer Science, 3.7)
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N-ary Relations & their Applications (8.2) (cont.)

Students 

Names

ID # Major GPA

Smith

Stevens 

Rao 

Adams 

Lee

3214

1412

6633

1320

1030

Mathematics

Computer Science 

Physics

Biology

Computer Science

3.9

4.0

3.5

3.0

3.7

TABLE A: Students
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N-ary Relations & their Applications (8.2) (cont.)

Operations on n-ary relations

– There are varieties of operations that are 
applied on n-ary relations in order to create 
new relations that answer eventual queries of 
a database

– Definition 2:

Let R be an n-ary relation and C a condition 
that elements in R may satisfy. Then the 
selection operator sC maps n-ary relation R to 
the n-ary relation of all n-tuples from R that 
satisfy the condition C.
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N-ary Relations & their Applications (8.2) (cont.)

–  Example:

if sC = “Major = “computer science”  GPA >

3.5” then the result of this selection consists 

of the 2 four-tuples:

(Stevens, 1412, Computer Science, 4.0)

(Lee, 1030, Computer Science, 3.7)



Selection Operator
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N-ary Relations & their Applications (8.2) (cont.) 

–  Definition 3:

The projection Pi1 ,i2 ,...,im maps the n-tuple 

(a1, a2, … ,  an) to the m-tuple ( ai1 
,ai2 

,...,aim 
) 

where m  n.

In other words, the projection Pi1 ,i2 ,...,im 
deletes n –  m of the components of n-tuple, 

leaving the i1th, i2th, … ,  and imth components.
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N-ary Relations & their Applications (8.2) (cont.)

–  Example: What relation results when the projection 

P1,4 is applied to the relation in Table A?

Solution: When the projection P1,4 is used, the second and third 

columns of the table are deleted, and pairs representing student 

names and GPA are obtained. Table B displays the results of 

this projection.

Students

Names

GPA

Smith 

Stevens

Rao 

Adams 

Lee

3.9

4.0

3.5

3.0

3.7

TABLE B:

GPAs
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N-ary Relations & their Applications (8.2) (cont.)

–  Definition 4:

Let R be a relation of degree m and S a relation 

of degree n. The join Jp(R,S), where p  m and 

p  n, is a relation of degree

m + n –  p that consists of all (m + n –  p)-tuples 

(a1, a2, … ,  am-p, c1, c2, … ,  cp, b1, b2, … ,  bn-p), 

where the m-tuple (a1, a2, … ,  am-p, c1, c2, … ,  cp) 

belongs to R and the n-tuple (c1, c2, … ,  cp, b1, 

b2, … ,  bn-p) belongs to S.
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N-ary Relations & their Applications (8.2) (cont.)

–  Example: What relation results when the 
operator J2 is used to combine the relation 
displayed in tables C and D?



Dpt Course # Room Time

Computer Science

Mathematics 

Mathematics 

Physics 

Psychology 

Psychology 

Zoology 

Zoology

518

575

611

544

501

617

335

412

N521

N502 

N521 

B505 

A100 

A110 

A100 

A100

2:00 PM

3:00 PM

4:00 PM

4:00 PM

3:00 PM

11:00 AM

9:00 AM

8:00 AM

Professor Dpt Course # 31

Cruz Zoology 335

Cruz Zoology 412

TABLE C: Farber Psychology 501

Teaching Farber Psychology 617

Assignments Grammer Physics 544

Grammer Physics 551

Rosen Computer Science 518

Rosen Mathematics 575

TABLE D:

Class

Schedule
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N-ary Relations & their Applications (8.2) (cont.)

Solution: The join J2 produces the relation 

shown in Table E

Professor Dpt Course # Room Time

Cruz 

Cruz 

Farber

Farber 

Grammer 

Rosen 

Rosen

Zoology 

Zoology 

Psychology

Psychology

Physics

Computer Science 

Mathematics

335

412

501

617

544

518

575

A100 

A100 

A100

A110 

B505 

N521 

N502

9:00 AM

8:00 AM

3:00 PM

11:00 AM

4:00 PM

2:00 PM

3:00 PM

Table E: 

Teaching 

Schedule
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N-ary Relations & their Applications (8.2) (cont.)

–  Example: We will illustrate how SQL (Structured Query 
Language) is used to express queries by showing how 
SQL can be employed to make a query about airline 
flights using Table F. The SQL statements

SELECT departure_time 

FROM Flights

WHERE destination = ‘Detroit’

are used to find the projection P5 (on the departure_time 
attribute) of the selection of 5-tuples in the flights 
database that satisfy the condition: destination =
„Detroit‟. The output would be a list containing the times 
of flights that have Detroit as their destination, namely, 
08:10, 08:47, and 9:44.
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N-ary Relations & their Applications (8.2) (cont.)

Airline Flight # Gate Destination Departure time

Nadir

Acme 

Acme 

Acme 

Nadir 

Acme 

Nadir

122

221

122

323

199

222

322

34

22

33

34

13

22

34

Detroit

Denver 

Anchorage 

Honolulu 

Detroit 

Denver 

Detroit

08:10

08:17

08:22

08:30

08”47

09:10

09:44

Table F: Flights
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Representing Relations (8.3)

First way is to list the ordered pairs

Second way is through matrices 

Third way is through direct graphs
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Representing Relations (8.3)

Representing relations through matrices

–  Example: Suppose that the relation R on a set is
represented by the matrix:

Is R reflexive, symmetric, and/or antisymmetric?

Solution: Since all the diagonal elements of this 
matrix are equal to 1, R is reflexive. Moreover, since 
MR is symmetric  R is symmetric. R is not 
antisymmetric.

m = 
1 if (ai ,b j )  R

0 otherwise
ij

 
0 1 1

1 1 0

MR = 1 1 1 .



Reflexive Relations:

The matrix has 1’s on the diagonal (if A=B).

Example: R={(1,1),(2,2),(3,3)}→ Identity matrix.

Symmetric Relations:

The matrix is symmetric (𝑀𝑅=𝑀𝑅
𝑇 ​).

Example: R={(1,2),(2,1),(2,3),(3,2)}

Transitive Relations:

If 𝑀𝑅
2 has non-zero entries where 𝑀𝑅 has zeros, the 

relation is not transitive.
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Representing Relations (8.3)

Representing relations using diagraphs

–  Definition 1:

A directed graph, or diagraph, consists of a 

set V of vertices (or nodes) together with a 

set E of ordered pairs of elements of V called 

edges (or arcs). The vertex a is called the 

initial vertex of the edge (a, b), and the vertex 

b is called the terminal vertex of this edge.
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Representing Relations (8.3)

–  Example: The directed graph with vertices a, 

b, c and d , and edges (a,b), (a,d), (b,b),

(b,d), (c,a) and (d,b). The edge (b,b) is called 

a loop.

a b

cd
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Equivalence Relations (8.5)
Students registration time with respect to the 
first letter of their names

R contains (x,y)  x and y are students with 
last names beginning with letters in the same 
block

3 blocks are considered: A-F, G-O, P-Z 

R is reflexive, symmetric & transitive

The set of student is therefore divided in 3 
classes depending on the first letter of their 
names
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Equivalence Relations (8.5)

Definition 1

A relation on a set A is called an equivalence relation if
it is reflexive, symmetric and transitive.

Examples
:
– Suppose that R is the relation on the set of strings of English 

letters such that aRb if and only if l(a) = l(b), where l(x) is the 
length of the string x. Is R an equivalence relation?
Solution: R is reflexive, symmetric and transitive  R is an 
equivalence relation

– A divides b; is it an equivalence relation?
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Equivalence Relations (8.5) 

Equivalence classes

–  Definition 2:

Let R be an equivalence relation on a set A. 
The set of all elements that are related to an 
element a of A is called the equivalence class 
of a. The equivalence class of a with respect 
to R is denoted by [a]R. When only one 
relation is under consideration, we will delete 
the subscript R and write [a] for this 
equivalence class.
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Equivalence Relations (8.5)

–  Example: What are the equivalences classes of 0 
and 1 for congruence modulo 4?

Solution:
The equivalence class of 0 contains all the integers a 
such that a  0 (mod 4). Hence, the equivalence 
class of 0 for this relation is

[0] = { … ,  -8, -4, 0, 4, 8, … }

The equivalence class of 1 contains all the integers a 
such that a  1 (mod 4). The integers in this class are 
those that have a remainder of 1 when divided by 4.
Hence, the equivalence class of 1 for this relation is

[1] = { … ,  -7, -3, 1, 5, 9, … }
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Equivalence Relations (8.5)

Equivalence classes & partitions

–  Theorem 1:

Let R be an equivalence relation on a set A. 

These statements are equivalent:

i. a R b

ii. [a] = [b]

iii. [a]  [b]  
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Equivalence Relations (8.5)

–  Theorem 2:

Let R be an equivalence relation on a set S. 

Then the equivalence classes of R form a 

partition of S. Conversely, given a partition
{Ai | i I} of the set S, there is an equivalence 

relation R that has the sets Ai , i  I, as its

equivalence classes.
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Equivalence Relations (8.5)

–  Example: List the ordered pairs in the equivalence 
relation R produced by the partition A1 = [1,2,3}, 
A2 = {4,5} and A3 = {6} of S = {1,2,3,4,5,6}

Solution: The subsets in the partition are the 
equivalences classes of R. The pair (a,b)  R if and 
only if a and b are in the same subset of the partition.

The pairs (1,1), (1,2), (1,3), (2,1), (2,2), (2,3), (3,1),
(3,2) and (3,3)  R  A1 = [1,2,3} is an equivalence 
class. The pairs (4,4), (4,5), (5,4) and (5,5)  R 

A2 = {4,5} is an equivalence class.
The pair (6,6)  R  {6} is an equivalence class.

No pairs other than those listed belongs to R.



Let S={1,2,3,4} and R be:

R={(1,1),(2,2),(3,3),(4,4),(1,2),(2,1),(3,4),(4,3)}.

Equivalence Classes:
[1]=[2]={1,2},

[3]=[4]={3,4}.

Partition: S={1,2}∪{3,4}.





❖ Reflexive + Transitive → Preorder

❖ Reflexive + Symmetric + Transitive → Equivalence Relation

❖ Reflexive + Antisymmetric + Transitive → Partial Order



Thank you
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